Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Lasers Med Sci ; 19(3): 155-60, 2004.
Artículo en Inglés | MEDLINE | ID: mdl-15645320

RESUMEN

The erbium:YSGG and erbium:YAG lasers are used for tissue ablation in dermatology, dentistry and ophthalmology. The purpose of this study was to compare germanium oxide and sapphire optical fibres for transmission of sufficient Q-switched erbium laser pulse energies for potential use in both soft and hard tissue ablation applications. Fibre transmission studies were conducted with Q-switched (500 ns) Er:YSGG (lambda=2.79 microm) and Er:YAG (lambda=2.94 microm) laser pulses delivered at 3 Hz through 1-m-long, 450-mum germanium oxide and 425-mum sapphire optical fibres. Transmission of free-running (300 micros) Er:YSGG and Er:YAG laser pulses was also conducted for comparison. Each set of measurements was carried out on seven different sapphire or germanium fibres, and the data were then averaged. Fibre attenuation of Q-switched Er:YSGG laser energy measured 1.3+/-0.1 dB/m and 1.0+/-0.2 dB/m for the germanium and sapphire fibres, respectively. Attenuation of Q-switched Er:YAG laser energy measured 0.9+/-0.3 dB/m and 0.6+/-0.2 dB/m, respectively. A maximum Q-switched Er:YSGG pulse energy of 42 mJ (26-30 J/cm(2)) was transmitted through the fibres. However, fibre tip damage was observed at energies exceeding 25 mJ (n=2). Both germanium oxide and sapphire optical fibres transmitted sufficient Q-switched Er:YSGG and Er:YAG laser radiation for use in both soft and hard tissue ablation. This is the first report of germanium and sapphire fibre optic transmission of Q-switched erbium laser energies of 25-42 mJ per pulse.


Asunto(s)
Óxido de Aluminio/efectos de la radiación , Germanio/efectos de la radiación , Rayos Láser , Erbio
2.
J Endourol ; 18(9): 830-5, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15659913

RESUMEN

BACKGROUND AND PURPOSE: Previous studies have demonstrated that the erbium:YAG laser is two to three times more efficient for laser lithotripsy than the holmium:YAG laser. However, the lack of a suitable optical fiber delivery system remains a major obstacle to clinical application of Er:YAG laser lithotripsy. This paper describes the initial testing of a hybrid germanium oxide/silica optical fiber for potential endoscopic use with the Er:YAG laser. MATERIALS AND METHODS: Er:YAG laser radiation with a wavelength of 2.94 microm, a pulse energy of 10 to 600 mJ, a pulse length of 220 microsec, and pulse-repetition rates of 3 to 10 Hz was focused into either 350- or 425- microm-core hybrid germanium/silica fibers in contact with human uric acid or calcium oxalate monohydrate stones. RESULTS: Average Er:YAG pulse energies of 157 +/- 46 mJ (66 J/cm(2)) (N = 8) were delivered at 10 Hz through the 425-microm hybrid fibers in contact with urinary stones before fiber damage was observed. A maximum pulse energy of 233 mJ (98 J/cm(2)) was also measured through the hybrid fiber in contact with the stones. These values are significantly greater than the stone ablation thresholds of 15 to 23 mJ (6-10 J/cm(2)) and the fiber damage thresholds measured for germanium oxide, 18 +/- 1 mJ (13 J/cm(2)), and sapphire, 73 mJ (51 J/cm(2)), optical fibers during Er:YAG laser lithotripsy (P < 0.05). CONCLUSIONS: A prototype hybrid germanium/silica optical fiber demonstrated better performance than both germanium oxide and sapphire fibers for transmission of Er:YAG laser radiation during in vitro lithotripsy.


Asunto(s)
Litotripsia por Láser/instrumentación , Óxido de Aluminio , Erbio , Tecnología de Fibra Óptica , Germanio , Humanos , Técnicas In Vitro , Fibras Ópticas , Dióxido de Silicio , Cálculos Urinarios/terapia
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA