Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Total Environ ; 815: 152663, 2022 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-34971685

RESUMEN

Landfill leachate (LL), especially the reverse osmosis concentrate (ROC), is a societal burden due to high toxicity but may have intrinsic values attributing to copious nutrients and organics. ROC bioremediation by microalgae has attracted much attentions benefiting from its extra advantage of bioenergy production. However, efficient microalgae cultivation with ROC is still a challenging task attributing to notorious ROC characteristics, like high chromaticity and toxicity. To alleviate these negative influences, a technique integrating granular activated carbon (GAC) pretreatment and microalgae bioremediation was proposed, with which nitrogen and phosphorus removal efficiencies achieved 100% along with an optimized microalgal biomass concentration of 1.44 g/L and lipid yield of 482.4 mg/L. Furthermore, a total volumetric energy yield of 33.6 kJ/L was acquired, which was conducive to realize energy valorization. The visualization evidence of three-dimensional fluorescence spectroscopy revealed chromaticity degradation mechanism of ROC as humic acids reduction and transfer to family of soluble microbial by-products. Meanwhile, contributions of GAC adsorption and microalgae assimilation on nutrients removal were analyzed. Together, this work provides a promising method and valuable information for ROC bioremediation with microalgae.


Asunto(s)
Chlorella vulgaris , Microalgas , Biomasa , Carbón Orgánico , Nitrógeno , Nutrientes , Ósmosis , Aguas Residuales
2.
Bioresour Technol ; 214: 629-636, 2016 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-27187567

RESUMEN

A novel self-adaptive microalgae photobioreactor using anion exchange membranes (AEM-PBR) for continuous supply of nutrients was proposed to improve microalgae biomass production. The introduction of anion exchange membranes to the PBR can realize continuous supply of nutrients at desired rates, which is beneficial to the growth of microalgae. The results showed that the maximum biomass concentration obtained in the AEM-PBR under continuous supply of nitrogen at an average rate of 19.0mgN/L/d was 2.98g/L, which was 129.2% higher than that (1.30g/L) in a PBR with all the nitrogen supplied in batch at initial. In addition, the feeding rates of nitrogen and phosphorus were optimized in the AEM-PBR to maximize biomass production. The maximum biomass concentration of 4.38g/L was obtained under synergistic regulation of nitrogen and phosphorus feeding rates at 19.0mgN/L/d and 4.2mgP/L/d. The AEM-PBR demonstrates a promising approach for high-density cultivation of microalgae.


Asunto(s)
Membranas Artificiales , Microalgas/crecimiento & desarrollo , Fotobiorreactores , Aniones , Biomasa , Nitrógeno/análisis , Fósforo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA