Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
1.
Sci Total Environ ; 927: 172424, 2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38614348

RESUMEN

Atmospheric nitrogen (N) deposition inevitably alters soil nutrient status, subsequently prompting plants to modify their root morphology (i.e., adopting a do-it-yourself strategy), mycorrhizal symbioses (i.e., outsourcing strategy), and root exudation (i.e., nutrient-mining strategy) linking with resource acquisition. However, how N deposition influences the integrated pattern of these resource-acquisition strategies remains unclear. Furthermore, most studies in forest ecosystems have focused on understory N and inorganic N deposition, neglecting canopy-associated processes (e.g., N interception and assimilation) and the impacts of organic N on root functional traits. In this study, we compared the effects of canopy vs understory, organic vs inorganic N deposition on eight root functional traits of Moso bamboo plants. Our results showed that N deposition significantly decreased arbuscular mycorrhizal fungi (AMF) colonization, altered root exudation rate and root foraging traits (branching intensity, specific root area, and length), but did not influence root tissue density and N concentration. Moreover, the impacts of N deposition on root functional traits varied significantly with deposition approach (canopy vs. understory), form (organic vs. inorganic), and their interaction, showing variations in both intensity and direction (positive/negative). Furthermore, specific root area and length were positively correlated with AMF colonization under canopy N deposition and root exudation rate in understory N deposition. Root trait variation under understory N deposition, but not under canopy N deposition, was classified into the collaboration gradient and the conservation gradient. These findings imply that coordination of nutrient-acquisition strategies dependent on N deposition approach. Overall, this study provides a holistic understanding of the impacts of N deposition on root resource-acquisition strategies. Our results indicate that the evaluation of N deposition on fine roots in forest ecosystems might be biased if N is added understory.


Asunto(s)
Micorrizas , Nitrógeno , Raíces de Plantas , Raíces de Plantas/metabolismo , Nitrógeno/metabolismo , Micorrizas/fisiología , Suelo/química , Bosques , China , Simbiosis , Sasa
2.
Sci Total Environ ; 924: 171655, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38492605

RESUMEN

Grassland restoration leads to excessive soils with carbon (C) and nitrogen (N) contents that are inadequate to fulfill the requirements of microorganisms. The differences in the stoichiometric ratios of these elements could limit the activity of microorganisms, which ultimately affects the microbial C, N use efficiencies (CUE, NUE) and the dynamics of soil C and N. The present study was aimed at quantifying the soil microbial nutrient limitation and exploring the mechanisms underlying microbial-induced C and N dynamics in chrono-sequence of restored grasslands. It was revealed that grassland restoration increased microbial C, N content, microbial C, N uptake, and microbial CUE and NUE, while the threshold elemental ratio (the C:N ratio) decreased, which is mainly due to the synergistic effect of the microbial biomass and enzymatic stoichiometry imbalance after grassland restoration. Finally, we present a framework for the nutrient limitation strategies that stoichiometric imbalances constrain microbial-driven C and N dynamics. These results are the direct evidence of causal relations between stoichiometric ratios, microbial responses, and soil C, N cycling.


Asunto(s)
Pradera , Suelo , Biomasa , Microbiología del Suelo , Nitrógeno/análisis , Carbono , Ecosistema , Fósforo
3.
Chemosphere ; 331: 138804, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37137390

RESUMEN

Chromium (Cr) affects human health if it accumulates in organs to elevated concentrations. The toxicity risk of Cr in the ecosphere depends upon the dominant Cr species and their bioavailability in the lithosphere, hydrosphere, and biosphere. However, the soil-water-human nexus that controls the biogeochemical behaviour of Cr and its potential toxicity is not fully understood. This paper synthesizes information on different dimensions of Cr ecotoxicological hazards in the soil and water and their subsequent effects on human health. The various routes of environmental exposure of Cr to humans and other organisms are also discussed. Human exposure to Cr(VI) causes both carcinogenic and non-carcinogenic health effects via complicated reactions that include oxidative stress, chromosomal and DNA damage, and mutagenesis. Chromium(VI) inhalation can cause lung cancer; however, incidences of other types of cancer following Cr(VI) exposure are low but probable. The non-carcinogenic health consequences of Cr(VI) exposure are primarily respiratory and cutaneous. Research on the biogeochemical behaviour of Cr and its toxicological hazards on human and other biological routes is therefore urgently needed to develop a holistic approach to understanding the soil-water-human nexus that controls the toxicological hazards of Cr and its detoxification.


Asunto(s)
Suelo , Agua , Humanos , Cromo/toxicidad , Cromo/análisis , Exposición a Riesgos Ambientales , Carcinógenos/toxicidad , Carcinogénesis
4.
Sci Total Environ ; 858(Pt 2): 159773, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36374728

RESUMEN

Agricultural management practices affect microbial populations and ecoenzymatic activities; however, the effect of these practices on ecological stoichiometry relating the elemental ratio of resources to microbial biomass is poorly understood. In a 2-year field study, we assessed the effects of biochar and nitrapyrin (a commonly used nitrification inhibitor (NI)) on the ecological stoichiometry and microbial nutrient limitation in a wheat (Triticum aestivum L.)-canola (Brassica juncea L.) rotation. This study used a 3 × 2 factorial design that included two treatments: (i) biochar with three levels: no biochar addition (BC0), and biochar added at 10 (BC10) and 20 t ha-1 (BC20), and (ii) NI with two levels: without (NI0) and with NI (NI1). Soil microbial biomass carbon (C), nitrogen (N) and phosphorus (P) were increased by biochar application, regardless of the application rate, but were not affected by NI application. Biochar increased and NI decreased ß-1,4-glucosidase, ß-1,4-N-acetyl glucosaminidase and acid phosphatase (P < 0.05) with subsequent changes in ecoenzymatic stoichiometry. Ecoenzymatic stoichiometry analysis showed microbial P limitation relative to N in the studied area irrespective of the treatment, with contrasting effects of biochar (decreasing) and NI (increasing) on the vector angle of ecoenzymatic stoichiometry (P = 0.037 and 0.043, respectively). Biochar applied at 20 t ha-1 decreased the threshold elemental ratio of C:P at which microbial growth switches between nutrient and C limitations, suggesting a shift towards C relative to nutrient (P) limitation. This study concludes that biochar produced from manure compost can be useful in increasing microbial growth by alleviating P limitations in a wheat-canola rotation.


Asunto(s)
Nitrificación , Fósforo , Triticum , Carbono , Carbón Orgánico , Nitrógeno/análisis , Suelo , Microbiología del Suelo
5.
Sci Total Environ ; 850: 158032, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-35970464

RESUMEN

Conversion of forestland to intensively managed agricultural land occurs worldwide and can increase soil nitrous oxide (N2O) emissions by altering the transformation processes of nitrogen (N) cycling related microbes and environmental conditions. However, little research has been conducted to assess the relationships between nitrifying and denitrifying functional genes and enzyme activities, the altered soil environment and N2O emissions under forest conversion in subtropical China. Here, we investigated the long-term (two decades) effect of converting natural forests to intensively managed tea (Camellia sinensis L.) plantations on soil potential N2O emissions, inorganic N concentrations, functional gene abundances of nitrifying and denitrifying bacteria, as well as nitrifying and denitrifying enzyme activities in subtropical China. The conversion significantly increased soil potential N2O emissions, which were regulated directly by increased denitrifying enzyme activity (52 %) and nirS + nirK gene abundance (38 %) as shown by structural equation modeling, and indirectly by AOB-amoA gene abundance and inorganic N concentration. Our results indicate that converting natural forests to tea plantations directly increases soil inorganic N concentration, resulting in increases in the abundance of soil nitrifying and denitrifying microorganisms and the associated N2O emissions. These findings are crucial for disentangling the factors that directly and indirectly affect soil potential N2O emissions respond to the conversion of forest to tea plantation.


Asunto(s)
Óxido Nitroso , Suelo , Desnitrificación , Nitrógeno , Óxido Nitroso/análisis , Microbiología del Suelo ,
6.
Int J Mol Sci ; 23(15)2022 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35955715

RESUMEN

Root foraging enables plants to obtain more soil nutrients in a constantly changing nutrient environment. Little is known about the adaptation mechanism of adventitious roots of plants dominated by asexual reproduction (such as tea plants) to soil potassium heterogeneity. We investigated root foraging strategies for K by two tea plants (low-K tolerant genotype "1511" and low-K intolerant genotype "1601") using a multi-layer split-root system. Root exudates, root architecture and transcriptional responses to K heterogeneity were analyzed by HPLC, WinRHIZO and RNA-seq. With the higher leaf K concentrations and K biological utilization indexes, "1511" acclimated to K heterogeneity better than "1601". For "1511", maximum total root length and fine root length proportion appeared on the K-enriched side; the solubilization of soil K reached the maximum on the low-K side, which was consistent with the amount of organic acids released through root exudation. The cellulose decomposition genes that were abundant on the K-enriched side may have promoted root proliferation for "1511". This did not happen in "1601". The low-K tolerant tea genotype "1511" was better at acclimating to K heterogeneity, which was due to a smart root foraging strategy: more roots (especially fine roots) were developed in the K-enriched side; more organic acids were secreted in the low-K side to activate soil K and the root proliferation in the K-enriched side might be due to cellulose decomposition. The present research provides a practical basis for a better understanding of the adaptation strategies of clonal woody plants to soil nutrient availability.


Asunto(s)
Camellia sinensis , Suelo , Camellia sinensis/genética , Celulosa , Raíces de Plantas/fisiología , Potasio ,
7.
Sci Rep ; 12(1): 11463, 2022 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-35794246

RESUMEN

Developing sustainable materials for recovering and recycling nutrients from wastewater is critically needed for nutrients such as phosphorus that have a diminishing supply. Struvite crystallization is emerging as a promising strategy for phosphorus recovery which can be enhanced with seeding through microalgal biochar. The main bottleneck of using microalgae is its high harvesting cost. In this study, an integrated electrocoagulation-flotation (ECF) process is used to recover and at the same time modify the algal surface with magnesium anode and inert carbon cathode. Harvesting efficiency of 98% was achieved with 40.78 mA cm-2, 0.5 cm inter-electrode distance and energy consumption of 4.03 kWh kg-1 in 15 min. The harvested microalgae were pyrolyzed to obtain a yield of 52.90% Mg-laden microalgal biochar. Simultaneously, surface impregnation of 28% magnesium was attained as confirmed by Scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Phosphorus recovery and struvite yield of 93.70% and 2.66 g L-1, respectively, were obtained from dosing 1.50 g L-1 Mg-laden microalgal biochar. Comparison of physicochemical characteristics of residual supernatant after microalgal harvesting and struvite recovery showed that the combined use of both the residuals can serve as a sustainable growth medium for microalgae. The overall operating cost of the integrated process was found to be 2.48 USD kg-1 with a total energy consumption of 10.76 kWh kg-1, which was found to be lower than conventional harvesting unit processes such as centrifugation and filtration. This novel approach can help attaining a circular bioeconomy by encompassing nutrient recovery and waste management in an integrated process.


Asunto(s)
Microalgas , Carbón Orgánico , Cristalización , Electrocoagulación , Magnesio/química , Fósforo , Estruvita/química
8.
Nat Ecol Evol ; 6(8): 1112-1121, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35760890

RESUMEN

Soil phosphorus (P) availability is critical to plant productivity in many terrestrial ecosystems. How soil P availability responds to changes in plant diversity remains uncertain, despite the global crisis of rapid biodiversity loss. Our meta-analysis based on 180 studies across various ecosystems (croplands, grasslands, forests and pot experiments) shows that, on average, soil total P, phosphatase activity and available P are 6.8%, 8.5% and 4.6%, respectively, higher in species mixtures than in monocultures. The mixture effect on phosphatase activity becomes more positive with increasing species and functional group richness, with more pronounced increases in the rhizosphere than in the bulk soil. The mixture effects on soil-available P in the bulk soil do not change, but with increasing species or functional group richness these effects in the rhizosphere soil shift from positive to negative. Nonetheless, enhanced soil phosphatase activity stimulated available P in diverse species mixtures, offsetting increased plant uptake effects that decrease soil-available P. Moreover, the enhancement effects of species richness on soil phosphatase activity are positively associated with increased plant productivity. Our findings highlight that preserving plant diversity could increase soil phosphatase activity and P availability, which sustain the current and future productivity of terrestrial ecosystems.


Asunto(s)
Ecosistema , Suelo , Monoéster Fosfórico Hidrolasas , Fósforo , Plantas
9.
Chemosphere ; 283: 131176, 2021 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-34144290

RESUMEN

Biochar is a promising novel material for managing phosphorus (P), a nutrient often limiting for primary production but can also be a pollutant, in the environment. Reducing P input to the environment and finding cost-effective approaches to remediate P contamination are major challenges in P management. There is currently no review that systematically summarizes biochar effects on soil P availability and its P removal potential from water systems. In this paper, we comprehensively reviewed biochar effects on soil P availability and P removal from water systems and discussed the mechanisms involved. Biochar affects soil P cycling by altering P chemical forms, changing soil P sorption and desorption capacities, and influencing microbial population size, enzyme activities, mycorrhizal associations and microbial production of metal-chelating organic acids. The porous structure, high specific surface area, and metal oxide and surface functional groups make biochars effective materials for removing P from eutrophic water via ligand exchange, cation bridge, and P precipitation. Because soil and biochar properties are widely variable, the effect of biochar on the fate of P in soil and water systems is inconsistent among different studies. Knowledge gaps in the economic practicability of large-scale biochar application, the longevity of biochar benefits, and the potential ecological risks of biochar application should be addressed in future research.


Asunto(s)
Contaminantes del Suelo , Suelo , Carbón Orgánico , Fósforo , Agua
10.
Sci Total Environ ; 747: 141340, 2020 Dec 10.
Artículo en Inglés | MEDLINE | ID: mdl-32795801

RESUMEN

Tea (Camellia sinensis L.) plants have an optimal pH range of 4.5-6.0, and prefer ammonium (NH4+) over nitrate (NO3-); strong soil acidification and nitrification are thus detrimental to their growth. Application of NH4+-based fertilizers can enhance nitrification and produce H+ that can inhibit nitrification. However, how soil acidification and nitrification are interactively affected by different NH4+-based fertilizers in tea plantations remains unclear. The objective of this research was to evaluate the effect of the application of different forms and rates of NH4+-based fertilizers on pH, net nitrification rates, and N2O and NO emissions in an acidic tea plantation soil. We conducted a 35-day aerobic incubation experiment using ammonium sulphate, urea and ammonium bicarbonate applied at 0, 100 or 200 mg N kg-1 soil. Urea and ammonium bicarbonate significantly increased both soil pH and net nitrification rates, while ammonium sulphate did not affect soil pH but reduced net nitrification rates mainly due to the acidic nature of the fertilizer. We found that the effect of different NH4+-based nitrogen on soil nitrification depended on the impact of the fertilizers on soil pH, and nitrification played an important role in NO emissions, but not in N2O emissions. Overall, urea and ammonium bicarbonate application decoupled crop N preference and the form of N available in spite of increasing soil pH. We thus recommend the co-application of urease and nitrification inhibitors when urea is used as a fertilizer and nitrification inhibitors when ammonium bicarbonate is used as a fertilizer in tea plantations.


Asunto(s)
Compuestos de Amonio , Fertilizantes , Fertilizantes/análisis , Concentración de Iones de Hidrógeno , Nitrificación , Nitrógeno/análisis , Óxido Nitroso/análisis , Suelo ,
11.
Sci Total Environ ; 702: 134562, 2020 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-31731122

RESUMEN

Long-term livestock grazing (here after 'grazing') affects carbon (C) and nutrient cycling in grassland ecosystems, in part by altering the quantity and quality of litter inputs. Despite their spatial extent and size of carbon and nutrient stocks, the effect of grazing on grassland biogeochemical cycling through the mediation of microbial activity remains poorly understood. To better understand the relationship between grazing and C and nutrient cycling in litter, we conducted an 18-month long study in paired grasslands previously grazed and nongrazed by cattle for 25 years, measuring extracellular enzyme activity (EEA) in various plant litter samples. Litter sources, including seven grass species dominant in one or more subregions and possessing divergent responses to grazing, as well as a community mix of litter sourced from each site, were tested at 15 sites spanning three grassland subregions in Alberta, Canada. We quantified EEAs associated with C cycling (ß-glucosidase, ß-Cellobiosidase and ß-xylosidase), nitrogen (N) cycling (N-acetyl-glucosaminidase) and phosphorus (P) cycling (phosphatase). In general, litter in grasslands exposed to grazing had greater activity of C-liberating and P-liberating enzyme (ß-xylosidase and phosphatase) in the mesic grasslands of the Foothills Fescue subregion (P ≤ 0.10). Observed EEAs were strongly mediated by litter type, with greater EEAs in litter of grass species known to increase in abundance under long-term grazing, including Poa pratensis in the Foothills Fescue subregion, and Bouteloua gracilis in arid grasslands of the Mixedgrass Prairie. In contrast, Pascopyrum smithii litter had the lowest enzyme activities in all subregions. We also found that EEAs changed through time (0-18 months) with consistently high levels detected at 1 (June 2014), 6 (October 2014) and 18 months (October 2015) after placement. Overall, these findings indicate grazing enhances EEA, and thus C and N-cycling, in northern temperate grasslands.


Asunto(s)
Monitoreo del Ambiente , Pradera , Microbiología del Suelo , Alberta , Animales , Ecosistema , Herbivoria , Nitrógeno , Fósforo , Poaceae
12.
Environ Pollut ; 244: 608-616, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30384066

RESUMEN

Nitrogen (N) deposition has rapidly increased and is influencing forest ecosystem processes and functions on a global scale. Understanding process-specific N transformations, i.e., gross N transformations, in forest soils in response to N deposition is of great significance to gain mechanistic insights on the linkages between global N deposition and N availability or loss in forest soils. In this paper, we review factors controlling N mineralization, nitrification and N immobilization, particularly in relation to N deposition, discuss the limitations of net N transformation studies, and synthesize the literature on the effect of N deposition on gross N transformations in forest ecosystems. We found that more than 97% of published papers evaluating the effect of N deposition (including N addition experiments that simulate N deposition) on soil N cycle determined net rates of mineralization and nitrification, showing that N deposition significantly increased those rates by 24.9 and 153.9%, respectively. However, studies on net N transformation do not provide a mechanistic understanding of the effect of N deposition on N cycling. To date, a small number of studies (<20 published papers) have directly quantified the effect of N deposition on gross N transformation rates, limiting our understanding of the response of soil N cycling to N deposition. The responses to N deposition of specific N transformation processes such as autotrophic nitrification, heterotrophic nitrification, dissimilatory nitrate reduction to ammonium, N mineralization, and N immobilization are poorly studied. Future research needs to use more holistic approaches to study the impact of N deposition on gross N transformation rates, N loss and retention, and their microbial-driven mechanisms to provide a better understanding of the processes involved in N transformations, and to understand the differential responses between forest and other ecosystems.


Asunto(s)
Bosques , Nitratos/análisis , Nitrificación/fisiología , Nitrógeno/análisis , Suelo/química , Compuestos de Amonio/análisis , Ciclo del Nitrógeno/fisiología , Microbiología del Suelo
13.
Glob Chang Biol ; 24(8): 3452-3461, 2018 08.
Artículo en Inglés | MEDLINE | ID: mdl-29645398

RESUMEN

Long-term elevated nitrogen (N) input from anthropogenic sources may cause soil acidification and decrease crop yield, yet the response of the belowground microbial community to long-term N input alone or in combination with phosphorus (P) and potassium (K) is poorly understood. We explored the effect of long-term N and NPK fertilization on soil bacterial diversity and community composition using meta-analysis of a global dataset. Nitrogen fertilization decreased soil pH, and increased soil organic carbon (C) and available N contents. Bacterial taxonomic diversity was decreased by N fertilization alone, but was increased by NPK fertilization. The effect of N fertilization on bacterial diversity varied with soil texture and water management, but was independent of crop type or N application rate. Changes in bacterial diversity were positively related to both soil pH and organic C content under N fertilization alone, but only to soil organic C under NPK fertilization. Microbial biomass C decreased with decreasing bacterial diversity under long-term N fertilization. Nitrogen fertilization increased the relative abundance of Proteobacteria and Actinobacteria, but reduced the abundance of Acidobacteria, consistent with the general life history strategy theory for bacteria. The positive correlation between N application rate and the relative abundance of Actinobacteria indicates that increased N availability favored the growth of Actinobacteria. This first global analysis of long-term N and NPK fertilization that differentially affects bacterial diversity and community composition provides a reference for nutrient management strategies for maintaining belowground microbial diversity in agro-ecosystems worldwide.


Asunto(s)
Agricultura , Ecosistema , Fertilizantes/análisis , Microbiota , Microbiología del Suelo , Actinobacteria , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , Proteobacteria
14.
Environ Sci Pollut Res Int ; 25(26): 25799-25812, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-29429110

RESUMEN

Biochar is recognized as an effective material for recovering excess nutrients, including phosphorus (P), from aqueous solutions. Practically, that benefits the environment through reducing P losses from biochar-amended soils; however, how salinity influences P sorption by biochar is poorly understood and there has been no direct comparison on P sorption capacity between biochars derived from different feedstock types under non-saline and saline conditions. In this study, biochars derived from wheat straw, hardwood, and willow wood were used to compare P sorption at three levels of electrical conductivity (EC) (0, 4, and 8 dS m-1) to represent a wide range of salinity conditions. Phosphorus sorption by wheat straw and hardwood biochars increased as aqueous solution P concentration increased, with willow wood biochar exhibiting an opposite trend for P sorption. However, the pattern for P sorption became the same as the other biochars after the willow wood biochar was de-ashed with 1 M HCl and 0.05 M HF. Willow wood biochar had the highest P sorption (1.93 mg g-1) followed by hardwood (1.20 mg g-1) and wheat straw biochars (1.06 mg g-1) in a 25 mg L-1 P solution. Although the pH in the equilibrium solution was higher with willow wood biochar (~ 9.5) than with the other two biochars (~ 6.5), solution pH had no or minor effects on P sorption by willow wood biochar. The high sorption rate of P by willow wood biochar could be attributed to the higher concentrations of salt and other elements (i.e., Ca and Mg) in the biochar in comparison to that in wheat straw and hardwood biochars; the EC values were 2.27, 0.53, and 0.27 dS m-1 for willow wood, wheat straw, and hardwood biochars, respectively. A portion of P desorbed from the willow wood biochar; and that desorption increased with the decreasing P concentration in the aqueous solution. Salinity in the aqueous solution influenced P sorption by hardwood and willow wood but not by wheat straw biochar. We conclude that the P sorption capacity of the studied biochars is dependent on the concentration of the soluble element in the biochar, which is dependent on the biochar type, as well as the salinity level in the aqueous solution.


Asunto(s)
Carbón Orgánico/química , Fósforo/química , Salinidad , Suelo/química , Adsorción , Salix , Contaminantes del Suelo , Triticum , Madera
15.
Bioresour Technol ; 166: 303-8, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24926603

RESUMEN

Sulfamethazine (SMT) as a veterinary drug has been detected frequently in the environment. In this study, six biochars produced from tea waste (TW) at 300 and 700 °C with or without N2 and steam activation were characterized and evaluated for SMT sorption in water. The sorption of SMT was interpreted as a function of biochar production condition, SMT concentration, pH and physicochemical characteristics of biochar. Distribution coefficient data showed high sorption of SMT at low pH (∼3) and the highest sorption density of 33.81 mg g(-1) was achieved by the steam activated biochar produced at 700 °C. The steam activation process increased the adsorption capacity by increasing the surface area of the biochar. The π-π electron donor-acceptor interaction, cation-π interaction and cation exchange at low pH were the primary mechanisms governing SMT retention by biochars. Overall, steam activated tea waste biochar could be a promising remedy of SMT removal from water.


Asunto(s)
Carbón Orgánico/química , Calor , Sulfametazina/química , Té/química , Contaminantes Químicos del Agua/química , Purificación del Agua/métodos , Adsorción , Concentración de Iones de Hidrógeno , Microscopía Electrónica de Rastreo , Modelos Estadísticos , Espectroscopía Infrarroja por Transformada de Fourier , Vapor , Sulfametazina/análisis , Contaminantes Químicos del Agua/análisis
16.
PLoS One ; 8(4): e61113, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23560114

RESUMEN

Understanding how plant trait-species abundance relationships change with a range of single and multivariate environmental properties is crucial for explaining species abundance and rarity. In this study, the abundance of 94 woody plant species was examined and related to 15 plant leaf and wood traits at both local and landscape scales involving 31 plots in subtropical forests in eastern China. Further, plant trait-species abundance relationships were related to a range of single and multivariate (PCA axes) environmental properties such as air humidity, soil moisture content, soil temperature, soil pH, and soil organic matter, nitrogen (N) and phosphorus (P) contents. At the landscape scale, plant maximum height, and twig and stem wood densities were positively correlated, whereas mean leaf area (MLA), leaf N concentration (LN), and total leaf area per twig size (TLA) were negatively correlated with species abundance. At the plot scale, plant maximum height, leaf and twig dry matter contents, twig and stem wood densities were positively correlated, but MLA, specific leaf area, LN, leaf P concentration and TLA were negatively correlated with species abundance. Plant trait-species abundance relationships shifted over the range of seven single environmental properties and along multivariate environmental axes in a similar way. In conclusion, strong relationships between plant traits and species abundance existed among and within communities. Significant shifts in plant trait-species abundance relationships in a range of environmental properties suggest strong environmental filtering processes that influence species abundance and rarity in the studied subtropical forests.


Asunto(s)
Hojas de la Planta/crecimiento & desarrollo , Tallos de la Planta/crecimiento & desarrollo , Carácter Cuantitativo Heredable , Árboles/crecimiento & desarrollo , China , Ecosistema , Aptitud Genética , Concentración de Iones de Hidrógeno , Nitrógeno/análisis , Fósforo/análisis , Hojas de la Planta/anatomía & histología , Tallos de la Planta/anatomía & histología , Análisis de Regresión , Suelo/química , Temperatura , Clima Tropical
17.
Chemosphere ; 84(4): 457-63, 2011 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-21489599

RESUMEN

The risk of soil acidification is high in the Athabasca oil sands region (AOSR) in Alberta, Canada, due to elevated SO(2) emission and the resultant acid deposition to sensitive, coarse-textured soils. Understanding the sulfate adsorption characteristics of soils sensitive to acidification will help establish critical loads of acid deposition in AOSR. Sulfate adsorption properties were evaluated and relationships between sulfate adsorption and soil properties were examined for soils in two contrasting watersheds (NE7 and SM8) in AOSR. The experimental data fitted well to both the Langmuir and the Freundlich models. The sulfate adsorption capacity was greater for soils in SM8 than in NE7 (p<0.01), even though it was relatively low in both watersheds as compared to other acid-sensitive soils in eastern North America. Based on the additional sulfate adsorbed when a soil was treated with 40mL of 200mg SO(4)(2-) L(-1) solution, the weakly developed Podzolic B horizon (Bfj)in NE7 could adsorb more sulfate than the Ae horizon while no difference was found among other horizons. In SM8, the Bfj and illuviated B (Bt) horizons had greater ability to adsorb sulfate than the other horizons, likely caused by the presence of muscovite in the Bfj and Bt horizons. The additional sulfate adsorbed accounted for about 80% of the total sulfate adsorption capacity and was correlated with pH(NaF) (soil pH extracted with 1 MNaF) and ΔpH(NaF)(the difference between pH(NaF) and pH measured with deionized water), with the following relationships: sulfate adsorption (mg SO(4)(2-) kg(-1))=exp(2.03 pH(NaF) - 18.0)+50.2 (R(2)=0.63, p<0.001) and sulfate adsorption (mg SO(4)(2-) kg(-1))=exp(1.83 ΔpH(NaF) - 6.57) + 48.9 (R(2)=0.70, p<0.001). The ΔpH(NaF) was likely a better indicator of the soil's sulfate adsorption capacity than pH(NaF) as the former excludes the effect of soil acidity. Our study indicates that the soil's capacity to adsorb sulfate should be considered in determining the critical load for acid deposition in AOSR in Alberta.


Asunto(s)
Petróleo , Dióxido de Silicio/química , Contaminantes del Suelo/química , Suelo/química , Sulfatos/química , Adsorción , Contaminantes Atmosféricos/análisis , Contaminantes Atmosféricos/química , Alberta , Industria Procesadora y de Extracción , Concentración de Iones de Hidrógeno , Contaminantes del Suelo/análisis , Sulfatos/análisis , Dióxido de Azufre/análisis , Dióxido de Azufre/química
18.
Bioresour Technol ; 101(6): 1686-92, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-19864127

RESUMEN

This study focused on the relationship between plant diversity (six species richness levels) and nutrient retention and enzyme activities associated with carbon, nitrogen and phosphorus cycling in a full-scale constructed wetland (CW) fed with post-treatment domestic wastewater. Effects of plant species richness on nutrient retention and enzyme activities were assessed using soil chemical and zymological methods, respectively. Retention of NH(4)-N and NO(3)-N in the wetland substrate increased with increasing species richness, while phosphorus retention significantly decreased under the richness level of 16 species per plot. Activities of enzymes such as dehydrogenase, beta-glucosidase, invertase, phenol oxidase, L-arsparaginase, protease and nitrate reductase, while they were affected by plant species richness, were strongly depended on the presence or absence of plants in CW substrate, while activities of enzymes such as CM-cellulase, urease and acid phosphatase were strongly depended on plant species richness. We conclude that plant species richness influenced nutrient retention and enzyme activities in the substrate in our subtropical CW; increase plant species richness in CW will likely improve the efficiency of wastewater treatment.


Asunto(s)
Conservación de los Recursos Naturales , Plantas/metabolismo , Humedales , Amoníaco/química , Biodiversidad , Carbono/química , Celulasa/química , Nitratos/química , Nitrógeno/química , Péptido Hidrolasas/química , Fósforo/química , Ureasa/química , Contaminantes Químicos del Agua/aislamiento & purificación , Purificación del Agua/métodos , beta-Glucosidasa/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA