Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Plant Biol ; 23(1): 63, 2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36721100

RESUMEN

BACKGROUND: A. annua (also named Artemisia annua, sweet wormwood) is the main source of the anti-malarial drug artemisinin, which is synthesised and stored in its trichomes. Members of the basic Helix-Loop-Helix (bHLH) family of transcription factors (TFs) have been implicated in artemisinin biosynthesis in A. annua and in trichome development in other plant species. RESULTS: Here, we have systematically identified and characterised 226 putative bHLH TFs in A. annua. All of the proteins contain a HLH domain, 213 of which also contain the basic motif that mediates DNA binding of HLH dimers. Of these, 22 also contained a Myc domain that permits dimerisation with other families of TFs; only two proteins lacking the basic motif contained a Myc domain. Highly conserved GO annotations reflected the transcriptional regulatory role of the identified TFs, and suggested conserved roles in biological processes such as iron homeostasis, and guard cell and endosperm development. Expression analysis revealed that three genes (AabHLH80, AabHLH96, and AaMyc-bHLH3) exhibited spatiotemporal expression patterns similar to genes encoding key enzymes in artemisinin synthesis. CONCLUSIONS: This comprehensive analysis of bHLH TFs provides a new resource to direct further analysis into key molecular mechanisms underlying and regulating artemisinin biosynthesis and trichome development, as well as other biological processes, in the key medicinal plant A. annua.


Asunto(s)
Artemisia annua , Artemisininas , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Artemisia annua/genética , Factores de Transcripción/genética , Secuencias Hélice-Asa-Hélice
2.
Chem Biol Interact ; 225: 40-6, 2015 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-25446857

RESUMEN

The neuroprotective effects of carnosic acid (CA), a phenolic diterpene isolated from rosemary (Rosmarinus officinalis), have been widely investigated in recent years, however, its protection in in vivo still unclear. In this study, we investigated the behavioral activity and neuroprotective effects of CA in a rat model of Parkinson's disease (PD) induced by 6-hydroxydopamine (6-OHDA). Rats were treated with 20mg/kg body weight of CA for 3 weeks before 6-OHDA exposure. Results indicated that CA improved the locomotor activity and reduced the apomorphine-caused rotation in 6-OHDA-stimulated rats. Significant protection against lipid peroxidation and GSH reduction was observed in the 6-OHDA rats pretreated with CA. Pretreatment with CA increased the protein expression of γ-glutamate-cysteine ligase catalytic subunit, γ-glutamate-cysteine ligase modifier subunit, superoxide dismutase, and glutathione reductase compared with 6-OHDA-stimulated rats and SH-SY5Y cells. Immunoblots showed that the reduction of the Bcl-2/Bax ratio, the induction of caspase 3 cleavage, and the induction of poly(ADP-ribose) polymerase (PARP) cleavage by 6-OHDA was reversed in the presence of SB203580 (a p38 inhibitor) or SP600125 (a JNK inhibitor) in SH-SY5Y cells. Rats treated with CA reversed the 6-OHDA-mediated the activation of c-Jun NH2-terminal kinase and p38, the down-regulation of the Bcl-2/Bax ratio, the up-regulation of cleaved caspase 3/caspase 3 and cleaved PARP/PARP ratio, and the down-regulation of tyrosine hydroxylase protein. However, BAM7, an activator of Bax, attenuated the effect of CA on apoptosis in SH-SY5Y cells. These results suggest that CA protected against 6-OHDA-induced neurotoxicity is attributable to its anti-apoptotic and anti-oxidative action. The present findings may help to clarify the possible mechanisms of rosemary in the neuroprotection of PD.


Asunto(s)
Abietanos/farmacología , Antioxidantes/farmacología , Enfermedad de Parkinson/metabolismo , Extractos Vegetales/farmacología , Animales , Western Blotting , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glutamato-Cisteína Ligasa/análisis , Glutamato-Cisteína Ligasa/metabolismo , Glutatión Reductasa/análisis , Glutatión Reductasa/metabolismo , Humanos , Masculino , Actividad Motora/fisiología , Oxidopamina/administración & dosificación , Enfermedad de Parkinson/enzimología , Poli(ADP-Ribosa) Polimerasas/análisis , Poli(ADP-Ribosa) Polimerasas/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar , Superóxido Dismutasa/análisis , Superóxido Dismutasa/metabolismo , Sustancias Reactivas al Ácido Tiobarbitúrico/análisis , Proteína X Asociada a bcl-2/análisis , Proteína X Asociada a bcl-2/metabolismo
3.
ChemSusChem ; 6(9): 1576-94, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23913576

RESUMEN

Vegetable oil-based feeds are regarded as an alternative source for the production of fuels and chemicals. Paraffins and olefins can be produced from these feeds through catalytic deoxygenation. The fundamentals of this process are mostly studied by using model compounds such as fatty acids, fatty acid esters, and specific triglycerides because of their structural similarity to vegetable oils. In this Review we discuss the impact of feedstock, reaction conditions, and nature of the catalyst on the reaction pathways of the deoxygenation of vegetable oils and its derivatives. As such, we conclude on the suitability of model compounds for this reaction. It is shown that the type of catalyst has a significant effect on the deoxygenation pathway, that is, group 10 metal catalysts are active in decarbonylation/decarboxylation whereas metal sulfide catalysts are more selective to hydrodeoxygenation. Deoxygenation studies performed under H2 showed similar pathways for fatty acids, fatty acid esters, triglycerides, and vegetable oils, as mostly deoxygenation occurs indirectly via the formation of fatty acids. Deoxygenation in the absence of H2 results in significant differences in reaction pathways and selectivities depending on the feedstock. Additionally, using unsaturated feedstocks under inert gas results in a high selectivity to undesired reactions such as cracking and the formation of heavies. Therefore, addition of H2 is proposed to be essential for the catalytic deoxygenation of vegetable oil feeds.


Asunto(s)
Oxígeno/química , Aceites de Plantas/química , Catálisis , Hidrógeno/química
4.
Chem Res Toxicol ; 25(9): 1893-901, 2012 Sep 17.
Artículo en Inglés | MEDLINE | ID: mdl-22894569

RESUMEN

Understanding the neuroprotective effects of the rosemary phenolic diterpene carnosic acid (CA) has attracted increasing attention. We explored the mechanism by which CA modulates the neurotoxic effects of 6-hydroxydopamine (6-OHDA) in SH-SY5Y cells. Cells were pretreated with CA for 12 h followed by treatment with 100 µM 6-OHDA for 12 or 24 h. Cell viability determined by the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolim bromide (MTT) assay indicated that 0.1 to 1 µM CA dose-dependently attenuated the cell death induced by 6-OHDA, whereas the effect of 3-5 µM CA was weaker. CA at 1 µM suppressed the 6-OHDA-induced nuclear condensation, reactive oxygen species generation, and cleavage of caspase 3 and PARP. Immunoblots showed that the phosphorylation of c-Jun NH(2)-terminal kinase (JNK) and p38 by 6-OHDA was reduced in the presence of CA. Incubation of cells with CA resulted in significant increases in the total glutathione (GSH) level and the protein expression of the γ-glutamylcysteine ligase catalytic subunit and modifier subunit. L-Buthionine-sulfoximine, an inhibitor of GSH synthesis, attenuated the effect of CA on cell death and apoptosis. Treatment with CA also led to an increase in nuclear factor erythroid-2 related factor 2 (Nrf2) activation, antioxidant response element (ARE)-luciferase reporter activity, and DNA binding to the ARE. Silencing of Nrf2 expression alleviated the reversal of p38 and JNK1/2 activation by CA. These results suggest that the attenuation of 6-OHDA-induced apoptosis by CA is associated with the Nrf2-driven synthesis of GSH, which in turn down-regulates the JNK and p38 signaling pathways. The CA compound may be a promising candidate for neuroprotection in Parkinson's disease.


Asunto(s)
Abietanos/farmacología , Antioxidantes/farmacología , Apoptosis/efectos de los fármacos , Glutatión/metabolismo , Oxidopamina/toxicidad , Extractos Vegetales/farmacología , Abietanos/química , Antioxidantes/química , Butionina Sulfoximina/química , Butionina Sulfoximina/farmacología , Línea Celular , Regulación hacia Abajo/efectos de los fármacos , Glutamato-Cisteína Ligasa/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Oxidopamina/química , Extractos Vegetales/química , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Sales de Tetrazolio/química , Sales de Tetrazolio/metabolismo , Tiazoles/química , Tiazoles/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
5.
J Agric Food Chem ; 55(26): 10692-702, 2007 Dec 26.
Artículo en Inglés | MEDLINE | ID: mdl-18052237

RESUMEN

Incorporation of stearic acid into canola oil to produce trans-free structured lipid (SL) as a healthy alternative to partially hydrogenated fats for margarine formulation was investigated. Response surface methodology was used to study the effects of lipozyme RM IM from Rhizomucor miehei and Candida rugosa lipase isoform 1 (LIP1) and two acyl donors, stearic acid and ethyl stearate, on the incorporation. Lipozyme RM IM and ethyl stearate gave the best result. Gram quantities of SLs were synthesized using lipozyme RM IM, and the products were compared to SL made by chemical catalysis and fat from commercial margarines. After short-path distillation, the products were characterized by GC and RPHPLC-MS to obtain fatty acid and triacylglycerol profiles, 13C NMR spectrometry for regiospecific analysis, X-ray diffraction for crystal forms, and DSC for melting profile. Stearic acid was incorporated into canola oil, mainly at the sn-1,3 positions, for the lipase reaction, and no new trans fatty acids formed. Most SL products did not have adequate solid fat content or beta' crystal forms for tub margarine, although these may be suitable for light margarine formulation.


Asunto(s)
Ácidos Grasos Monoinsaturados/análisis , Ácidos Grasos Monoinsaturados/metabolismo , Margarina/análisis , Ácidos Esteáricos/análisis , Ácidos Esteáricos/metabolismo , Candida/enzimología , Ácidos Grasos/análisis , Tecnología de Alimentos/métodos , Lipasa/metabolismo , Aceite de Brassica napus , Rhizomucor/enzimología , Ácidos Grasos trans/análisis , Triglicéridos/análisis
6.
J Agric Food Chem ; 55(22): 8995-9005, 2007 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-17902621

RESUMEN

The need for alternative energy sources that combine environmental friendliness with biodegradability, low toxicity, renewability, and less dependence on petroleum products has never been greater. One such energy source is referred to as biodiesel. This can be produced from vegetable oils, animal fats, microalgal oils, waste products of vegetable oil refinery or animal rendering, and used frying oils. Chemically, they are known as monoalkyl esters of fatty acids. The conventional method for producing biodiesel involves acid and base catalysts to form fatty acid alkyl esters. Downstream processing costs and environmental problems associated with biodiesel production and byproducts recovery have led to the search for alternative production methods and alternative substrates. Enzymatic reactions involving lipases can be an excellent alternative to produce biodiesel through a process commonly referred to alcoholysis, a form of transesterification reaction, or through an interesterification (ester interchange) reaction. Protein engineering can be useful in improving the catalytic efficiency of lipases as biocatalysts for biodiesel production. The use of recombinant DNA technology to produce large quantities of lipases, and the use of immobilized lipases and immobilized whole cells, may lower the overall cost, while presenting less downstream processing problems, to biodiesel production. In addition, the enzymatic approach is environmentally friendly, considered a "green reaction", and needs to be explored for industrial production of biodiesel.


Asunto(s)
Hidrolasas de Éster Carboxílico , Fuentes Generadoras de Energía , Grasas , Aceites de Plantas , Alquilación , Animales , Bacterias/enzimología , Hidrolasas de Éster Carboxílico/metabolismo , Enzimas Inmovilizadas , Esterificación , Ácidos Grasos/metabolismo , Hongos/enzimología , Gasolina , Ingeniería de Proteínas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA