Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
EMBO Mol Med ; 15(2): e16525, 2023 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-36645044

RESUMEN

Iron accumulation causes cell death and disrupts tissue functions, which necessitates chelation therapy to reduce iron overload. However, clinical utilization of deferoxamine (DFO), an iron chelator, has been documented to give rise to systemic adverse effects, including ocular toxicity. This study provided the pathogenic and molecular basis for DFO-related retinopathy and identified retinal pigment epithelium (RPE) as the target tissue in DFO-related retinopathy. Our modeling demonstrated the susceptibility of RPE to DFO compared with the neuroretina. Intriguingly, we established upregulation of hypoxia inducible factor (HIF) 2α and mitochondrial deficit as the most prominent pathogenesis underlying the RPE atrophy. Moreover, suppressing hyperactivity of HIF2α and preserving mitochondrial dysfunction by α-ketoglutarate (AKG) protects the RPE against lesions both in vitro and in vivo. This supported our observation that AKG supplementation alleviates visual impairment in a patient undergoing DFO-chelation therapy. Overall, our study established a significant role of iron deficiency in initiating DFO-related RPE atrophy. Inhibiting HIF2α and rescuing mitochondrial function by AKG protect RPE cells and can potentially ameliorate patients' visual function.


Asunto(s)
Quelantes del Hierro , Enfermedades de la Retina , Humanos , Quelantes del Hierro/efectos adversos , Muerte Celular , Atrofia/inducido químicamente
2.
Hum Mol Genet ; 31(14): 2438-2451, 2022 07 21.
Artículo en Inglés | MEDLINE | ID: mdl-35195241

RESUMEN

Retinitis pigmentosa (RP) is caused by one of many possible gene mutations. The National Institutes of Health recommends high daily doses of vitamin A palmitate for RP patients. There is a critical knowledge gap surrounding the therapeutic applicability of vitamin A to patients with the different subtypes of the disease. Here, we present a case report of a patient with RP caused by a p.D190N mutation in Rhodopsin (RHO) associated with abnormally high quantitative autofluorescence values after long-term vitamin A supplementation. We investigated the effects of vitamin A treatment strategy on RP caused by the p.D190N mutation in RHO by exposing Rhodopsin p.D190N (RhoD190N/+) and wild-type (WT) mice to experimental vitamin A-supplemented and standard control diets. The patient's case suggests that the vitamin A treatment strategy should be further studied to determine its effect on RP caused by p.D190N mutation in RHO and other mutations. Our mouse experiments revealed that RhoD190N/+ mice on the vitamin A diet exhibited higher levels of autofluorescence and lipofuscin metabolites compared to WT mice on the same diet and isogenic controls on the standard control diet. Vitamin A supplementation diminished photoreceptor function in RhoD190N/+ mice while preserving cone response in WT mice. Our findings highlight the importance of more investigations into the efficacy of clinical treatments like vitamin A for patients with certain genetic subtypes of disease and of genotyping in the precision care of inherited retinal degenerations.


Asunto(s)
Degeneración Retiniana , Retinitis Pigmentosa , Animales , Suplementos Dietéticos , Ratones , Mutación , Degeneración Retiniana/genética , Retinitis Pigmentosa/tratamiento farmacológico , Retinitis Pigmentosa/genética , Retinitis Pigmentosa/metabolismo , Rodopsina/genética , Rodopsina/metabolismo , Vitamina A
3.
J Neurosci ; 38(22): 5111-5121, 2018 05 30.
Artículo en Inglés | MEDLINE | ID: mdl-29760182

RESUMEN

Gait disturbances in Parkinson's disease are commonly refractory to current treatment options and majorly impair patient's quality of life. Auditory cues facilitate gait and prevent motor blocks. We investigated how neural dynamics in the human subthalamic nucleus of Parkinsons's disease patients (14 male, 2 female) vary during stepping and whether rhythmic auditory cues enhance the observed modulation. Oscillations in the beta band were suppressed after ipsilateral heel strikes, when the contralateral foot had to be raised, and reappeared after contralateral heel strikes, when the contralateral foot rested on the floor. The timing of this 20-30 Hz beta modulation was clearly distinct between the left and right subthalamic nucleus, and was alternating within each stepping cycle. This modulation was similar, whether stepping movements were made while sitting, standing, or during gait, confirming the utility of the stepping in place paradigm. During stepping in place, beta modulation increased with auditory cues that assisted patients in timing their steps more regularly. Our results suggest a link between the degree of power modulation within high beta frequency bands and stepping performance. These findings raise the possibility that alternating deep brain stimulation patterns may be superior to constant stimulation for improving parkinsonian gait.SIGNIFICANCE STATEMENT Gait disturbances in Parkinson's disease majorly reduce patients' quality of life and are often refractory to current treatment options. We investigated how neural activity in the subthalamic nucleus of patients who received deep brain stimulation surgery covaries with the stepping cycle. 20-30 Hz beta activity was modulated relative to each step, alternating between the left and right STN. The stepping performance of patients improved when auditory cues were provided, which went along with enhanced beta modulation. This raises the possibility that alternating stimulation patterns may also enhance beta modulation and may be more beneficial for gait control than continuous stimulation, which needs to be tested in future studies.


Asunto(s)
Ritmo beta , Núcleo Subtalámico/fisiopatología , Caminata , Estimulación Acústica , Anciano , Fenómenos Biomecánicos , Señales (Psicología) , Estimulación Encefálica Profunda , Electrodos Implantados , Retroalimentación Psicológica , Femenino , Marcha/fisiología , Talón/fisiología , Humanos , Masculino , Persona de Mediana Edad , Enfermedad de Parkinson/fisiopatología , Desempeño Psicomotor
4.
J Neuroeng Rehabil ; 14(1): 122, 2017 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-29183339

RESUMEN

BACKGROUND: Hemiplegic shoulder pain is a frequent complication after stroke, leading to limited use of the affected arm. Neuromuscular electrical stimulation (NMES) and transcutaneous electrical nerve stimulation (TENS) are two widely used interventions to reduce pain, but the comparative efficacy of these two modalities remains uncertain. The purpose of this research was to compare the immediate and retained effects of EMG-triggered NMES and TENS, both in combination with bilateral arm training, on hemiplegic shoulder pain and arm function of stroke patients. METHODS: A single-blind, randomized controlled trial was conducted at two medical centers. Thirty-eight patients (25 males and 13 females, 60.75 ± 10.84 years old, post stroke duration 32.68 ± 53.07 months) who had experienced a stroke more than 3 months ago at the time of recruitment and hemiplegic shoulder pain were randomized to EMG-triggered NMES or TENS. Both groups received electrical stimulation followed by bilateral arm training 3 times a week for 4 weeks. The primary outcome measures included a vertical Numerical Rating Scale supplemented with a Faces Rating Scale, and the short form of the Brief Pain Inventory. The secondary outcome measures were the upper-limb subscale of the Fugl-Meyer Assessment, and pain-free passive shoulder range of motion. All outcomes were measured pretreatment, post-treatment, and at 1-month after post-treatment. Two-way mixed repeated measures ANOVAs were used to examine treatment effects. RESULTS: Compared to TENS with bilateral arm training, the EMG-triggered NMES with bilateral arm training was associated with lower pain intensity during active and passive shoulder movement (P =0.007, P =0.008), lower worst pain intensity (P = 0.003), and greater pain-free passive shoulder abduction (P =0.001) and internal rotation (P =0.004) at follow-up. Both groups improved in pain at rest (P =0.02), pain interference with daily activities, the Fugl-Meyer Assessment, and pain-free passive shoulder flexion and external rotation post-treatment (P < 0.001) and maintained the improvement at follow-up (P < 0.001), except for resting pain (P =0.08). CONCLUSIONS: EMG-triggered NMES with bilateral arm training exhibited greater immediate and retained effects than TENS with bilateral arm training with respect to pain and shoulder impairment for chronic and subacute stroke patients with hemiplegic shoulder pain. TRIAL REGISTRATION: NCT01913509 .


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Dolor de Hombro/etiología , Dolor de Hombro/terapia , Rehabilitación de Accidente Cerebrovascular/métodos , Accidente Cerebrovascular/complicaciones , Anciano , Electromiografía , Femenino , Hemiplejía/etiología , Hemiplejía/terapia , Humanos , Masculino , Persona de Mediana Edad , Método Simple Ciego , Resultado del Tratamiento
5.
Nutrients ; 9(9)2017 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-28846663

RESUMEN

Luobuma (Apocynum venetum L. (AVL)) is a popular beverage in Asia and has been reportedly to be associated with the bioactivities such as cardiotonic, diuretic, antioxidative, and antihypertensive. However, its biofunction as chemoprevention activity is seldom addressed. Herein, we aimed to characterize the anti-androgen-insensitive-prostate-cancer (anti-AIPC) bioactive compounds of Luobuma, and to investigate the associated molecular mechanisms. Activity-guided-fractionation (antioxidative activity and cell survivability) of Luobuma ethanolic extracts was performed to isolate and characterize the major bioactive compounds using Ultra Performance Liquid Chromatography (UPLC), Liquid Chromatography-Mass Spectrometry (LC-MS), and Nuclear Magnetic Resonance (NMR). Plant sterols (lupeol, stigamasterol and ß-sitosterol) and polyphenolics (isorhamnetin, kaempferol, and quercetin) were identified. Lupeol, a triterpene found in the fraction (F8) eluted by 10% ethyl acetate/90% hexane and accounted for 19.3% (w/w) of F8, inhibited the proliferation of PC3 cells. Both lupeol and F8 induced G2/M arrest, inhibition of ß-catenin signaling, regulation of apoptotic signal molecules (cytochrome c, Bcl-2, P53, and caspase 3 and 8), and suppression DNA repair enzyme expression (Uracil-DNA glycosylase (UNG)). To our knowledge, our study is the first report that lupeol inhibited the expression of UNG to elicit the cytotoxicity against androgen-insensitive-prostate-cancer cells. Collectively, Luobuma, which contains several antitumor bioactive compounds, holds the potential to be a dietary chemopreventive agent for prostate cancer.


Asunto(s)
Anticarcinógenos/metabolismo , Apocynum/química , Extractos Vegetales/metabolismo , Hojas de la Planta/química , Neoplasias de la Próstata Resistentes a la Castración/prevención & control , Anticarcinógenos/química , Antineoplásicos Fitogénicos/análisis , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Antineoplásicos Fitogénicos/metabolismo , Proteínas Reguladoras de la Apoptosis/metabolismo , Línea Celular Tumoral , Proliferación Celular , Supervivencia Celular , Suplementos Dietéticos , Etnofarmacología , Fase G2 , Humanos , Masculino , Estructura Molecular , Proteínas de Neoplasias/metabolismo , Triterpenos Pentacíclicos/análisis , Triterpenos Pentacíclicos/química , Triterpenos Pentacíclicos/aislamiento & purificación , Triterpenos Pentacíclicos/farmacología , Extractos Vegetales/análisis , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Taiwán , Uracil-ADN Glicosidasa/antagonistas & inhibidores , Uracil-ADN Glicosidasa/metabolismo , Vía de Señalización Wnt , beta Catenina/antagonistas & inhibidores , beta Catenina/metabolismo
6.
Neural Plast ; 2015: 462182, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26417459

RESUMEN

Disrupted triphasic electromyography (EMG) patterns of agonist and antagonist muscle pairs during fast goal-directed movements have been found in patients with hypermetria. Since peripheral electrical stimulation (ES) and motor training may modulate motor cortical excitability through plasticity mechanisms, we aimed to investigate whether temporal ES-assisted movement training could influence premovement cortical excitability and alleviate hypermetria in patients with spinal cerebellar ataxia (SCA). The EMG of the agonist extensor carpi radialis muscle and antagonist flexor carpi radialis muscle, premovement motor evoked potentials (MEPs) of the flexor carpi radialis muscle, and the constant and variable errors of movements were assessed before and after 4 weeks of ES-assisted fast goal-directed wrist extension training in the training group and of general health education in the control group. After training, the premovement MEPs of the antagonist muscle were facilitated at 50 ms before the onset of movement. In addition, the EMG onset latency of the antagonist muscle shifted earlier and the constant error decreased significantly. In summary, temporal ES-assisted training alleviated hypermetria by restoring antagonist premovement and temporal triphasic EMG patterns in SCA patients. This technique may be applied to treat hypermetria in cerebellar disorders. (This trial is registered with NCT01983670.).


Asunto(s)
Cerebelo/patología , Terapia por Estimulación Eléctrica/métodos , Movimiento , Médula Espinal/patología , Adulto , Atrofia , Ataxia Cerebelosa/fisiopatología , Ataxia Cerebelosa/terapia , Electromiografía , Potenciales Evocados Motores , Femenino , Objetivos , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/inervación , Educación y Entrenamiento Físico , Desempeño Psicomotor , Tiempo de Reacción , Estimulación Magnética Transcraneal
7.
J Electromyogr Kinesiol ; 25(1): 143-50, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25434572

RESUMEN

The neuromodulation of motor excitability has been shown to improve functional movement in people with central nervous system damage. This study aimed to investigate the mechanism of peripheral neuromuscular electrical stimulation (NMES) in motor excitability and its effects in people with spinocerebellar ataxia (SCA). This single-blind case-control study was conducted on young control (n=9), age-matched control (n=9), and SCA participants (n=9; 7 SCAIII and 2 sporadic). All participants received an accumulated 30 min of NMES (25 Hz, 800 ms on/800 ms off) of the median nerve. The central motor excitability, measured by motor evoked potential (MEP) and silent period, and the peripheral motor excitability, measured by the H-reflex and M-wave, were recorded in flexor carpi radialis (FCR) muscle before, during, and after the NMES was applied. The results showed that NMES significantly enhanced the MEP in all 3 groups. The silent period, H-reflex and maximum M-wave were not changed by NMES. We conclude that NMES enhances low motor excitability in patients with SCA and that the mechanism of the neuromodulation was supra-segmental. These findings are potentially relevant to the utilization of NMES for preparation of motor excitability. The protocol was registered at Clinicaltrials.gov (NCT02103075).


Asunto(s)
Potenciales Evocados Motores , Nervio Mediano/fisiopatología , Corteza Motora/fisiopatología , Ataxias Espinocerebelosas/fisiopatología , Estimulación Eléctrica Transcutánea del Nervio , Adulto , Femenino , Reflejo H , Humanos , Masculino , Persona de Mediana Edad , Músculo Esquelético/fisiología , Método Simple Ciego , Ataxias Espinocerebelosas/terapia
8.
J Agric Food Chem ; 60(27): 6891-8, 2012 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-22676643

RESUMEN

The polyphenols in mulberry leaf possess the ability to inhibit cell proliferation, invasion, and metastasis of tumors. It was reported that the p53 status plays an important role in switching apoptosis and the cell cycle following adenosine monophosphate-activated protein kinase (AMPK) activation. In this study, we aimed to detect the effect of the mulberry leaf polyphenol extract (MLPE) on inducing cell death in p53-negative (Hep3B) and p53-positive (Hep3B with transfected p53) hepatocellular carcinoma cells and also to clarify the role of p53 in MLPE-treated cells. After treatment of the Hep3B cells with MLPE, apoptosis was induced via the AMPK/PI3K/Akt and Bcl-2 family pathways. Transient transfection of p53 into Hep3B cells led to switching autophagy instead of apoptosis by MLPE treatment. We demonstrated that acridine orange staining and protein expressions of LC-3 and beclin-1 were increased in p53-transfected cells. These results implied induction of apoptosis or autophagy in MLPE-treated hepatocellular carcinoma cells can be due to the p53 status. We also found MLPE can not only activate AMPK but also diminish fatty acid synthase, a molecular target for cancer inhibition. At present, our results indicate MLPE can play an active role in mediating the cell death of hepatocellular carcinoma cells and the p53 might play an important role in regulating the death mechanisms.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis/efectos de los fármacos , Carcinoma Hepatocelular/fisiopatología , Acido Graso Sintasa Tipo I/metabolismo , Neoplasias Hepáticas/fisiopatología , Morus/química , Extractos Vegetales/farmacología , Polifenoles/farmacología , Proteínas Quinasas Activadas por AMP/genética , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/enzimología , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Acido Graso Sintasa Tipo I/genética , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/enzimología , Neoplasias Hepáticas/genética , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
9.
IEEE Trans Neural Syst Rehabil Eng ; 20(4): 574-83, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22481833

RESUMEN

Voltage-controlled neuromuscular electrical stimulation has been considered to be safer in noninvasive applications notwithstanding the fact that voltage-controlled devices purportedly generate forces less predictable than their current-controlled equivalents. This prompted us to evaluate relevant electrical parameters to determine whether forces induced by voltage-controlled stimuli were able to match to those induced by current-controlled ones, which tend to evoke forces that were more predictable. Force magnitudes corresponding to current- and voltage-controlled stimuli were aligned with respect to electric charge (equivalent to average current intensity) and electrical energy (equivalent to average power) of the same stimulation pulse to determine which provided a better coherence. Consistency of forces evaluated with energy was significantly (p < 0.001) better than that evaluated with electric charges, suggesting that electrically stimulated forces can be reliably predicted by monitoring the energy parameter of stimulation pulses. The above results appear to show that electrode-tissue impedance, a factor that makes charge and energy evaluations different, redefined the actual effects of current intensities in generating favorable results. Accordingly, novel schemes that track the energy (or average power) of a stimulation pulse may be used as a reliable benchmark to associate mechanical (force) and electrical (stimulation pulse) characteristics in transcutaneous applications of electrical stimulation.


Asunto(s)
Biorretroalimentación Psicológica/métodos , Biorretroalimentación Psicológica/fisiología , Estimulación Eléctrica/métodos , Contracción Isométrica/fisiología , Músculo Esquelético/fisiología , Animales , Transferencia de Energía , Masculino , Conejos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
10.
J Rehabil Res Dev ; 48(5): 555-64, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-21674405

RESUMEN

Effective treatments for multiple sclerosis (MS)-associated central fatigue have not been established. Surface functional electrical stimulation (FES), which can challenge the peripheral neuromuscular system without overloading the central nervous system, is a relatively safe therapeutic strategy. We investigated the effect of 8 weeks of surface FES training on the levels of general, central, and peripheral fatigue in MS patients. Seven of nine individuals with MS (average age: 42.86 +/- 13.47 years) completed 8 weeks of quadriceps muscle surface FES training. Maximal voluntary contraction, voluntary activation level, twitch force, General Fatigue Index (FI), Central Fatigue Index (CFI), Peripheral Fatigue Index, and Modified Fatigue Impact Scale (MFIS) scores were determined before and after training. The results showed that FI (p = 0.01), CFI (p = 0.02), and MFIS (p = 0.02) scores improved significantly after training. Improvements in central fatigue contributed significantly to improvements in general fatigue (p < 0.01). The results of the current study showed that central fatigue was a primary limitation in patients with MS during voluntary exercise and that 8 weeks of surface FES training for individuals with MS led to significantly reduced fatigue, particularly central fatigue.


Asunto(s)
Sistema Nervioso Central/fisiopatología , Terapia por Estimulación Eléctrica , Fatiga/terapia , Esclerosis Múltiple/fisiopatología , Esclerosis Múltiple/rehabilitación , Sistema Nervioso Periférico/fisiopatología , Adulto , Prueba de Esfuerzo , Fatiga/etiología , Fatiga/fisiopatología , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Contracción Muscular/fisiología , Músculo Cuádriceps/fisiología
11.
Neurorehabil Neural Repair ; 25(5): 423-32, 2011 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-21304018

RESUMEN

BACKGROUND: Muscle fatigue prevents repetitive use of paralyzed muscle after spinal cord injury (SCI). OBJECTIVE: This study compared the effects of hybrid patterns of muscle stimulation in individuals with acute and chronic SCI. METHODS: Individuals with chronic (n = 11) or acute paralysis (n = 3) underwent soleus muscle activation with a constant (CT) or doublet (DT) stimulation train before and at various times after a fatigue protocol. RESULTS: The chronically paralyzed soleus was highly fatigable with a fatigue index (FI) of 19% ± 6%, whereas the acutely paralyzed soleus was fatigue resistant (FI = 89% ± 8%). For the chronically paralyzed group, the DT protocol caused less than 5% improvement in peak and mean force relative to the CT protocol before fatigue; however, after fatigue the DT protocol caused an increase in peak and mean force (>10%), compared with the CT protocol (P < .05). As the chronically paralyzed muscle developed low-frequency fatigue, the DT protocol became more effective than the CT protocol (P < .05). The DT protocol increased the rate of torque development before fatigue (42% ± 78%), after fatigue (62% ± 52%), and during recovery (87% ± 54% to 101% ± 56%; P < .05). The acutely paralyzed group showed minimal change in peak and mean torque with the DT protocol. CONCLUSIONS: Chronic reduced activity is associated with muscle adaptations (slow to fast) that render the muscle more amenable to force enhancement through doublet train activation after fatigue. These findings are applicable to patients using neuromuscular stimulation.


Asunto(s)
Terapia por Estimulación Eléctrica/métodos , Parálisis/fisiopatología , Parálisis/rehabilitación , Traumatismos de la Médula Espinal/fisiopatología , Traumatismos de la Médula Espinal/rehabilitación , Torque , Enfermedad Aguda , Adulto , Enfermedad Crónica , Femenino , Humanos , Masculino , Fatiga Muscular , Músculo Esquelético/fisiopatología , Parálisis/etiología , Traumatismos de la Médula Espinal/complicaciones , Factores de Tiempo , Adulto Joven
12.
Muscle Nerve ; 26(5): 673-80, 2002 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-12402290

RESUMEN

Electromyographic (EMG) recordings may serve an important role in predicting torque during repetitive activation of paralyzed muscle. We compared the initial M-wave to the subsequent M-waves of the same train under fatigued and recovered conditions in the paralyzed human soleus muscle. Sixteen individuals with chronic (n = 13) or acute paralysis (n = 3) had the tibial nerve activated before and after a repetitive supramaximal stimulation protocol. The mean within-train M-wave amplitude and median frequency increased approximately 20%, whereas the duration decreased approximately 15% compared with the initial M-wave of each train. During fatigue, there was a linear decrease in the difference between the initial M-wave amplitude and subsequent train ( approximately 20% to 8%). Following fatigue, this difference recovered to approximately 12%. The difference between the M-wave train average and the initial M-wave for amplitude, duration, and median frequency closely followed torque (Pearson correlations = 0.99, 0.94, and 0.98, respectively) during fatigue. We conclude that the difference between the later-occurring M-waves (average of the train) and initial M-wave is large when muscle torque is high and less when torque is low and, therefore, predicts torque during activation of paralyzed muscle. This difference in the within-train M-wave amplitude, duration, and median frequency may reflect a mechanical change, such as muscle shortening and increased muscle cross-sectional area during isometric contractions. Electromyographic feedback may assist in the optimization of neuromuscular electrical stimulation of paralyzed muscle.


Asunto(s)
Terapia por Estimulación Eléctrica/efectos adversos , Músculo Esquelético/fisiopatología , Parálisis/fisiopatología , Potenciales de Acción/fisiología , Adulto , Electromiografía , Humanos , Contracción Muscular/fisiología , Fatiga Muscular/fisiología , Torque
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA