Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Integr Environ Assess Manag ; 12(3): 580-90, 2016 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26331849

RESUMEN

Life cycle assessment (LCA) has considerable merit for holistic evaluation of product planning, development, production, and disposal, with the inherent benefit of providing a forecast of potential health and environmental impacts. However, a technical review of current life cycle impact assessment (LCIA) methods revealed limitations within the biological effects assessment protocols, including: simplistic assessment approaches and models; an inability to integrate emerging types of toxicity data; a reliance on linear impact assessment models; a lack of methods to mitigate uncertainty; and no explicit consideration of effects in species of concern. The purpose of the current study is to demonstrate that a new concept in toxicological and regulatory assessment, the adverse outcome pathway (AOP), has many useful attributes of potential use to ameliorate many of these problems, to expand data utility and model robustness, and to enable more accurate and defensible biological effects assessments within LCIA. Background, context, and examples have been provided to demonstrate these potential benefits. We additionally propose that these benefits can be most effectively realized through development of quantitative AOPs (qAOPs) crafted to meet the needs of the LCIA framework. As a means to stimulate qAOP research and development in support of LCIA, we propose 3 conceptual classes of qAOP, each with unique inherent attributes for supporting LCIA: 1) mechanistic, including computational toxicology models; 2) probabilistic, including Bayesian networks and supervised machine learning models; and 3) weight of evidence, including models built using decision-analytic methods. Overall, we have highlighted a number of potential applications of qAOPs that can refine and add value to LCIA. As the AOP concept and support framework matures, we see the potential for qAOPs to serve a foundational role for next-generation effects characterization within LCIA. Integr Environ Assess Manag 2016;12:580-590. Published 2015. This article is a US Government work and is in the public domain in the USA.


Asunto(s)
Monitoreo del Ambiente/métodos , Pruebas de Toxicidad/métodos , Teorema de Bayes , Simulación por Computador , Ambiente , Modelos Químicos , Modelos Teóricos
2.
Chemosphere ; 95: 174-81, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24095615

RESUMEN

Selenium (Se) chemistry can be very complex in the natural environment, exhibiting different valence states (-2, 0, +4, +6) representing multiple inorganic, methylated, or complexed forms. Since redox associated shifts among most of known Se species can occur at environmentally relevant conditions, it is important to identify these species in order to assess their potential toxicity to organisms. In June of 2009, researchers from the US Army Engineer Research & Development Center (ERDC) conducted investigations of the fly ash spilled 6 months previously into the Emory River at the TVA Kingston Fossil Plant, TN. Ash samples were collected on site from both the original ash pile (that did not move during the levee failure), from the spill zone (including the Emory River), and from the ash recovery ditch (ARD) containing ash removed during dredging cleanup operations. The purpose of this work was to determine the state of Se in the spilled fly ash and to assess its potential for transformation and resultant chemical stability from its prolonged submersion in the river and subsequent dredging. Sequential chemical extractions suggested that the river environment shifted Se distribution toward organic/sulfide species. Speciation studies by bulk XANES analysis on fly ash samples showed that a substantial portion of the Se in the original ash pile had transformed from inorganic selenite to a mixture of Se sulfide and reduced (organo)selenium (Se(-II)) species over the 6-month period. µ-XRF mapping data showed that significant trends in the co-location of Se domains with sulfur and ash heavy metals. Ten-d extended elutriate tests (EETs) that were bubbled continuously with atmospheric air to simulate worst-case oxidizing conditions during dredging showed no discernible change in the speciation of fly ash selenium. The enhanced stability of the organo- and sulfide-selenium species coincided with the mixture of the ash material with humic materials in the river, corresponding with notable shifts in the ash carbon- and nitrogen-functionality.


Asunto(s)
Ceniza del Carbón/química , Modelos Químicos , Ríos/química , Selenio/química , Contaminantes Químicos del Agua/química , Metales Pesados/análisis , Selenio/análisis , Contaminantes Químicos del Agua/análisis
3.
J Agric Food Chem ; 58(18): 9882-92, 2010 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-20726583

RESUMEN

Advanced solid-state NMR was employed to investigate differences in chemical structure and heterogeneity between milled wood lignin (MWL) and residual enzyme lignin (REL). Wiley and conventional milled woods were also studied. The advanced NMR techniques included 13C quantitative direct polarization, various spectral-editing techniques, and two-dimensional 1H-13C heteronuclear correlation NMR with 1H spin diffusion. The 13C chemical shift regions between 110 and 160 ppm of two lignins were quite similar to those of two milled woods. REL contained much more residual carbohydrates than MWL, showing that MWL extraction more successfully separated lignin from cellulose and hemicelluloses than REL extraction; REL was also of higher COO, aromatic C-C, and condensed aromatics but of lower aromatic C-H. At a spin diffusion time of 0.55 ms, the magnetization was equilibrated through the whole structure of MWL lignin, but not through that of REL, indicating that REL is more heterogeneous than MWL.


Asunto(s)
Lignina/química , Resonancia Magnética Nuclear Biomolecular/métodos , Pinus taeda/química , Madera/química , Lignina/aislamiento & purificación , Lignina/metabolismo , Extractos Vegetales/química , Extractos Vegetales/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA