Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Complement Med Ther ; 22(1): 42, 2022 Feb 14.
Artículo en Inglés | MEDLINE | ID: mdl-35152903

RESUMEN

BACKGROUND: Antibiotic resistances of pathogens and breast cancer warrant the search for new alternative strategies. Phytoextracts can eradicate microbe-borne diseases as well as cancer with lower side effects compared to conventional antibiotics. AIM: Unripe and ripe Azadirachta indica (neem) seed extracts were explored as potential antibiofilm and anticancer agents in combating multidrug-resistant infectious bacteria as well as anticancer agents against the MDR breast cancer cell lines. METHODS: Shed-dried neem seeds (both unripe and ripe) were pulverized and extracted using methanol. The chemical components were identified with FTIR and gas chromatography - mass spectrometry. Antibiofilm activity of neem seed extracts were assessed in terms of minimum biofilm inhibitory concentration (MBIC), minimum biofilm eradication concentration (MBEC), and fluorescence microscopic studies on Staphylococcus aureus and Vibrio cholerae. Bacterial cells were studied by fluorescence microscopy using acridine orange/ethidium bromide as the staining agents. Minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) values were evaluated to observe the antibacterial activities. Cytotoxicity of the extracts against human blood lymphocytes and the anticancer activity against drug-resistant breast cancer cell lines were assessed by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay and fluorescence-activated cell sorting (FACS) studies. RESULTS: 4-Ethyl-2-hydroxy-2-cyclopentene-1-one, phthalic acid, and 2-hexyl-tetrahydro thiophane were the major compounds in unripe neem seed, whereas 3,5-dihydroxy-6-methyl-2,3-dihydro-4-H-pyran-4-one and 4-ethylbenzamide were predominant in ripe neem seed. Triazine derivatives were also common for both the extracts. MBIC values of unripe and ripe neem seed extracts for S. aureus are 75 and 100 µg/mL, respectively, and for V. cholerae, they are 100 and 300 µg/mL, respectively. MBEC values of unripe and ripe seed extracts are 500 and 300 µg/mL, respectively for S. aureus and for V. cholerae the values are 700 and 500 µg/mL, respectively. Fluorescence microscopic studies at 16 and 24 h, after bacterial culture, demonstrate enhanced antibiofilm activity for the ripe seed extract than that of the unripe seeds for both the bacteria. MTT assay reveals lower cytotoxicity of both the extracts towards normal blood lymphocytes, and anticancer activity against breast cancer cell line (MDA-MB-231) with superior activity of ripe seed extract. FACS studies further supported higher anticancer activity for ripe seed extract. CONCLUSIONS: Methanolic extract of neem seeds could substantially inhibit and eradicate biofilm along with their potent antibacterial and anticancer activities. Both the extracts showed higher antibiofilm and antibacterial activity against S. aureus (gram-positive) than V. cholerae (gram-negative). Moreover, ripe seed extract showed higher antibiofilm and anticancer activity than unripe extracts.


Asunto(s)
Azadirachta , Biopelículas , Humanos , Pruebas de Sensibilidad Microbiana , Extractos Vegetales/farmacología , Staphylococcus aureus
2.
STAR Protoc ; 2(4): 101027, 2021 12 17.
Artículo en Inglés | MEDLINE | ID: mdl-34977673

RESUMEN

Here, we describe a robust protocol using mouse models to screen potential insulin-stabilizers and insulin moieties. We have generated a mouse model of amyloidoma, found in diabetic patients undergoing insulin therapy. This model can be used to screen potential insulin stabilizers and insulin moieties to prevent amyloidoma formation. This protocol can further be used for the preclinical validation of therapeutically relevant insulin stabilizers and formulations. The protocol highlights all the critical steps for generating amyloidoma in a preclinical model. For complete details on the use and execution of this profile, please refer to Mukherjee et al. (2021).


Asunto(s)
Amiloide , Amiloidosis , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Amiloide/química , Amiloide/efectos de los fármacos , Amiloide/metabolismo , Amiloidosis/metabolismo , Amiloidosis/patología , Animales , Insulina/química , Insulina/metabolismo , Masculino , Ratones , Ratones Endogámicos BALB C
3.
Sci Rep ; 9(1): 4073, 2019 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-30858542

RESUMEN

Vasculogenesis and angiogenesis are process of formation of blood vessels. Blood vessels are evolved to distribute nutrients and oxygen to distant organs. These vessels are crucial for growth and repair of wounded tissue. During tumor condition there occurs imbalance in the growth of blood vessels which leads to neo-angiogenesis. Neo-angiogenesis is major perpetrator behind the establishment of tumor. Tumor cells secrete pro-angiogenic factor VEGFA which binds to VEGFR2 present over surface of endothelial cells and triggers formation of new blood vessels. To inhibit tumor-angiogenesis, a physiologically-safe small molecule inhibitor was screened which can potentially interact with kinase domain of VEGFR2 and inhibit its activity. Molecular-docking module and biochemical analysis identified andrographolide as one of the best docking molecules that binds to ATP-binding pocket of VEGFR2 and inhibits its kinase activity. Thus, for a more radical approach towards safe VEGFR2 inhibitor, andrographolide was repurposed to inhibit tumor-angiogenesis and reduce tumor burden.


Asunto(s)
Diterpenos/farmacología , Neoplasias/tratamiento farmacológico , Neovascularización Patológica/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Adenosina Trifosfato/química , Adenosina Trifosfato/genética , Andrographis paniculata , Inhibidores de la Angiogénesis/química , Inhibidores de la Angiogénesis/farmacología , Vasos Sanguíneos/efectos de los fármacos , Vasos Sanguíneos/metabolismo , Proteínas Portadoras/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Colágeno/farmacología , Diterpenos/química , Combinación de Medicamentos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Laminina/farmacología , Neoplasias/genética , Neoplasias/patología , Neovascularización Patológica/genética , Neovascularización Patológica/patología , Extractos Vegetales/química , Conformación Proteica/efectos de los fármacos , Proteoglicanos/farmacología , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/química , Receptor 2 de Factores de Crecimiento Endotelial Vascular/química
4.
Oncotarget ; 7(48): 78281-78296, 2016 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-27835876

RESUMEN

Aggregation of proteins with the expansion of polyglutamine tracts in the brain underlies progressive genetic neurodegenerative diseases (NDs) like Huntington's disease and spinocerebellar ataxias (SCA). An insensitive cellular proteotoxic stress response to non-native protein oligomers is common in such conditions. Indeed, upregulation of heat shock factor 1 (HSF1) function and its target protein chaperone expression has shown promising results in animal models of NDs. Using an HSF1 sensitive cell based reporter screening, we have isolated azadiradione (AZD) from the methanolic extract of seeds of Azadirachta indica, a plant known for its multifarious medicinal properties. We show that AZD ameliorates toxicity due to protein aggregation in cell and fly models of polyglutamine expansion diseases to a great extent. All these effects are correlated with activation of HSF1 function and expression of its target protein chaperone genes. Notably, HSF1 activation by AZD is independent of cellular HSP90 or proteasome function. Furthermore, we show that AZD directly interacts with purified human HSF1 with high specificity, and facilitates binding of HSF1 to its recognition sequence with higher affinity. These unique findings qualify AZD as an ideal lead molecule for consideration for drug development against NDs that affect millions worldwide.


Asunto(s)
ADN/metabolismo , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Limoninas/farmacología , Enfermedades Neurodegenerativas/prevención & control , Fármacos Neuroprotectores/farmacología , Péptidos/metabolismo , Extractos Vegetales/farmacología , Agregación Patológica de Proteínas , Animales , Azadirachta/química , ADN/genética , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Células HCT116 , Células HEK293 , Factores de Transcripción del Choque Térmico/genética , Humanos , Limoninas/aislamiento & purificación , Limoninas/metabolismo , Enfermedades Neurodegenerativas/genética , Enfermedades Neurodegenerativas/metabolismo , Enfermedades Neurodegenerativas/patología , Fármacos Neuroprotectores/aislamiento & purificación , Fármacos Neuroprotectores/metabolismo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Unión Proteica , Semillas , Factores de Tiempo , Transfección
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA