Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 15(7)2023 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-37049400

RESUMEN

(1) Background: Gastrointestinal pain and fatigue are the most reported concerns of patients with inflammatory bowel disease (IBD). Commonly prescribed drugs focus on decreasing excessive inflammation. However, up to 20% of IBD patients in an "inactive" state experience abdominal pain. The medicinal herb Ojeok-san (OJS) has shown promise in the amelioration of visceral pain. However, no research on OJS has been conducted in preclinical models of IBD. The mechanism by which OJS promotes analgesia is still elusive, and it is unclear if OJS possesses addictive properties. (2) Aims: In this study, we examined the potential of OJS to promote analgesic effects and rewarding behavior. Additionally, we investigated if tumor necrosis factor alpha (TNFα) from macrophages is a primary culprit of IBD-induced nociception. (3) Methods: Multiple animal models of IBD were used to determine if OJS can reduce visceral nociception. TNFα-macrophage deficient mice were used to investigate the mechanism of action by which OJS reduces nociceptive behavior. Mechanical sensitivity and operant conditioning tests were used to determine the analgesic and rewarding effects of OJS. Body weight, colon length/weight, blood in stool, colonic inflammation, and complete blood count were assessed to determine disease progression. (4) Results: OJS reduced the evoked mechanical nociception in the dextran sulphate sodium model of colitis and IL-10 knockout (KO) mice and delayed aversion to colorectal distension in C57BL/6 mice. No rewarding behavior was observed in OJS-treated IL-10 KO and mdr1a KO mice. The analgesic effects of OJS are independent of macrophage TNFα levels and IBD progression. (5) Conclusions: OJS ameliorated elicited mechanical and visceral nociception without producing rewarding effects. The analgesic effects of OJS are not mediated by macrophage TNFα.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Ratones , Animales , Interleucina-10 , Factor de Necrosis Tumoral alfa/efectos adversos , Ratones Endogámicos C57BL , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Colitis/inducido químicamente , Ratones Noqueados , Inflamación , Dolor , Modelos Animales de Enfermedad , Sulfato de Dextran/efectos adversos
2.
PLoS One ; 17(6): e0270338, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35737651

RESUMEN

Cancer patients can develop visceral, somatic, and neuropathic pain, largely due to the malignancy itself and its treatments. Often cancer patients and survivors turn to the use of complementary and alternative medicine (CAM) to alleviate pain and fatigue. Thus, it is necessary to investigate how CAM therapies work as novel analgesics to treat cancer pain. Ojeok-san (OJS) is an herbal formula consisting of seventeen herbs. This herbal formula has been shown to possess anti-inflammatory, immunoregulatory, and analgesic properties. In this study, we examined the potential beneficial effects and mechanism of action of OJS in a preclinical model of colitis-associated colorectal cancer. Male and female C57BL/6J mice were exposed to the carcinogen, azoxymethane (AOM, 10 mg/kg) and a chemical inflammatory driver, dextran sulfate sodium (DSS1-2%), to promote tumorigenesis in the colorectum. OJS was given orally (500, 1000, and 2000 mg/kg) to determine its influence on disease activity, tumor burden, nociception, sedation, Erk signaling, and behavioral and metabolic outcomes. In addition, in vitro studies were performed to assess CT-26 cell viability, dorsal root ganglia (DRG) activation, and bone-marrow-derived macrophage (BMDM) inflammatory response to lipopolysaccharide stimulation after OJS treatment. We found that administration of 2000 mg/kg of OJS was able to mitigate mechanical somatic and visceral nociception via Erk signaling without affecting symptom score and polyp number. Moreover, we discovered that OJS has sedative properties and elicits prolonged total sleeping time in AOM/DSS mice. Our in vitro experiments showed that OJS has the capacity to reduce TNFα gene expression in LPS-stimulated BMDM, but no changes were observed in DRG spike number and CT-26 cell proliferation. Taken together, these data suggest that OJS ameliorates nociception in mice and warrants further examination as a potential CAM therapy to promote analgesia.


Asunto(s)
Colitis , Neoplasias Colorrectales , Animales , Azoximetano/toxicidad , Colitis/inducido químicamente , Colitis/complicaciones , Colitis/tratamiento farmacológico , Neoplasias Colorrectales/inducido químicamente , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/metabolismo , Sulfato de Dextran/efectos adversos , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Nocicepción , Extractos Vegetales
3.
Anticancer Drugs ; 13(9): 949-56, 2002 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-12394258

RESUMEN

The receptors for luteinizing hormone-releasing hormone (LHRH) are found in 80% of human ovarian carcinomas. These receptors can be used for targeted chemotherapy with cytotoxic analogs of LHRH, such as AN-207, consisting of 2-pyrrolinodoxorubicin (AN-201) linked to [D-Lys ]LHRH. We investigated the effects of AN-207 and AN-201 on the growth of LHRH receptor-positive ES-2 human ovarian cancers. The effects of the treatment on mRNA and protein levels of human epidermal growth factor (EGF) receptors (EGFR and HER-2) in ovarian tumors were determined by RT-PCR and immunoblotting. In Experiment 1, nude mice bearing ES-2 ovarian tumors were injected i.v. with 250 nmol/kg doses of AN-207, AN-201, the carrier [D-Lys ]LHRH, an unconjugated mixture of AN-201 and [D-Lys ]LHRH or vehicle. AN-207 caused a significant ( <0.01) 59.5% inhibition in tumor growth while its components were ineffective. In Experiment 2, mice with large ES-2 tumors were treated with AN-207 or AN-201 at 250 nmol/kg. Again, AN-207, but not AN-201, inhibited tumor growth. In Experiment 3, the site of action of AN-207 was investigated. The blockade of LHRH receptors with Cetrorelix partially suppressed the antitumor effect of AN-207. Treatment with AN-207 significantly ( <0.01) decreased the expression of mRNA for EGFR, and HER-2 by 27 and 34%, respectively, as compared to controls and reduced the receptor protein levels of EGFR and HER-2 by 35 and 36%, respectively ( <0.05). The results indicate that cytotoxic LHRH analog AN-207 could be considered for chemotherapy of ovarian cancers expressing LHRH receptors.


Asunto(s)
Antineoplásicos/uso terapéutico , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapéutico , Hormona Liberadora de Gonadotropina/análogos & derivados , Hormona Liberadora de Gonadotropina/uso terapéutico , Neoplasias Ováricas/tratamiento farmacológico , Receptores LHRH/biosíntesis , Animales , Evaluación Preclínica de Medicamentos , Receptores ErbB/antagonistas & inhibidores , Receptores ErbB/biosíntesis , Femenino , Humanos , Ratones , Ratones Desnudos , Trasplante de Neoplasias , Neoplasias Ováricas/metabolismo , Pirroles/uso terapéutico , ARN Mensajero/análisis , Receptor ErbB-2/antagonistas & inhibidores , Receptor ErbB-2/biosíntesis , Receptores LHRH/antagonistas & inhibidores , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Resultado del Tratamiento , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA