Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Trials ; 24(1): 482, 2023 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-37507763

RESUMEN

BACKGROUND: In autosomal dominant polycystic kidney disease (ADPKD) impaired nitric oxide (NO) synthesis, in part, contributes to early-onset hypertension. Beetroot juice (BRJ) reduces blood pressure (BP) by increasing NO-mediated vasodilation. The aim of this double-blind, randomised, placebo-controlled study is to test the hypothesis that BRJ reduces systolic and diastolic clinic BP in hypertensive adults with ADPKD. METHODS: Participants with ADPKD and treated hypertension (n = 60) will be randomly allocated (1:1) to receive a daily dose of either nitrate-replete (400 mg nitrate/day) or nitrate-deplete BRJ for 4 weeks. The co-primary outcomes are change in mean systolic and diastolic clinic BP before and after 4 weeks of treatment with daily BRJ. Secondary outcomes are changes in daily home BP, urinary albumin to creatinine ratio, serum and salivary nitrate/nitrite levels and serum asymmetric dimethylarginine levels before and after 4 weeks of BRJ. DISCUSSION: The effect of BRJ in ADPKD has not been previously tested. BRJ is an accessible, natural dietary supplement that, if effective, will provide a novel adjunctive approach for treating hypertension in ADPKD. TRIAL REGISTRATION: ClinicalTrials.gov NCT05401409. Retrospectively registered on 27th May 2022.


Asunto(s)
Beta vulgaris , Hipertensión , Hipotensión , Riñón Poliquístico Autosómico Dominante , Humanos , Adulto , Presión Sanguínea , Nitratos/farmacología , Nitratos/uso terapéutico , Riñón Poliquístico Autosómico Dominante/complicaciones , Riñón Poliquístico Autosómico Dominante/diagnóstico , Riñón Poliquístico Autosómico Dominante/tratamiento farmacológico , Hipertensión/diagnóstico , Hipertensión/tratamiento farmacológico , Antioxidantes/uso terapéutico , Método Doble Ciego , Suplementos Dietéticos , Ensayos Clínicos Controlados Aleatorios como Asunto
2.
PLoS One ; 16(4): e0248400, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33886581

RESUMEN

Augmentation of endogenous nitric oxide (NO) synthesis, either by the classical L-arginine-NO synthase pathway, or the recently discovered entero-salivary nitrate-nitrite-NO system, may slow the progression of autosomal dominant polycystic kidney disease (ADPKD). To test this hypothesis, the expression of NO in human ADPKD cell lines (WT 9-7, WT 9-12), and the effect of L-arginine on an in vitro model of three-dimensional cyst growth using MDCK cells, was examined. In addition, groups of homozygous Pkd1RC/RC mice (a hypomorphic genetic ortholog of ADPKD) received either low, moderate or high dose sodium nitrate (0.1, 1 or 10 mmol/kg/day), or sodium chloride (vehicle; 10 mmol/kg/day), supplemented drinking water from postnatal month 1 to 9 (n = 12 per group). In vitro, intracellular NO, as assessed by DAF-2/DA fluorescence, was reduced by >70% in human ADPKD cell lines, and L-arginine and the NO donor, sodium nitroprusside, both attenuated in vitro cyst growth by up to 18%. In contrast, in Pkd1RC/RC mice, sodium nitrate supplementation increased serum nitrate/nitrite levels by ~25-fold in the high dose group (P<0.001), but kidney enlargement and percentage cyst area was not altered, regardless of dose. In conclusion, L-arginine has mild direct efficacy on reducing renal cyst growth in vitro, whereas long-term sodium nitrate supplementation was ineffective in vivo. These data suggest that the bioconversion of dietary nitrate to NO by the entero-salivary pathway may not be sufficient to influence the progression of renal cyst growth in ADPKD.


Asunto(s)
Suplementos Dietéticos , Riñón/patología , Nitratos/uso terapéutico , Riñón Poliquístico Autosómico Dominante/patología , Riñón Poliquístico Autosómico Dominante/terapia , Animales , Línea Celular , Quistes/patología , Quistes/terapia , Perros , Femenino , Humanos , Células de Riñón Canino Madin Darby , Masculino , Ratones , Ratones Endogámicos C57BL
3.
Am J Obstet Gynecol ; 221(3): 255.e1-255.e9, 2019 09.
Artículo en Inglés | MEDLINE | ID: mdl-31051121

RESUMEN

BACKGROUND: The benefit of aspirin in preventing preeclampsia is well established; however, studies over the years have demonstrated variability in outcomes with its use. Potential contributing factors to this variation in efficacy include dosing, time of dosing, and preparation of aspirin. OBJECTIVE: We aimed to compare the difference in pharmacokinetics of aspirin, through its major active metabolite, salicylic acid, in pregnant women and nonpregnant women, and to examine the effect of dose (100 mg vs 150 mg), preparation (enteric coated vs non-enteric-coated), and chronotherapy of aspirin (morning vs evening) between the 2 groups. MATERIALS AND METHODS: Twelve high-risk pregnant women and 3 nonpregnant women were enrolled in this study. Pregnant women were in 1 of 4 groups (100 mg enteric coated, 100 mg non-enteric-coated, 150 mg non-enteric-coated morning dosing, and 150 mg non-enteric-coated evening dosing), whereas nonpregnant women undertook each of the 4 dosing schedules with at least a 30-day washout period. Blood samples were collected at baseline (before ingestion) and at 1, 2, 4, 6, 12, and 24 hours after ingestion of aspirin. Plasma obtained was analyzed for salicylic acid levels by means of liquid chromatography-mass spectrometry. Pharmacokinetic values of area under the curve from time point 0 to 24 hours point of maximum concentration, time of maximum concentration, volume of distribution, clearance, and elimination half-life were analyzed for statistical significance with SPSS v25 software. RESULTS: Pregnant women had a 40% ± 4% reduction in area under the curve from time point 0 to 24 hours (P < .01) and 29% ± 3% reduction in point of maximum concentration (P < .01) with a 44% ± 8% increase in clearance (P < .01) in comparison to that in nonpregnant women when 100 mg aspirin was administered. The reduction in the area under the curve from time point 0 to 24 hours, however, was minimized with the use of 150 mg aspirin in pregnant women, with which the area under the curve from time point 0 to 24 hours was closer to that achieved with the use of 100 mg aspirin in nonpregnant women. There was a 4-hour delay (P < .01) in the time of maximum concentration, a 47% ± 3% reduction in point of maximum concentration (P < .01) and a 48% ± 1% increase in volume of distribution (P < .01) with the use of 100 mg enteric-coated aspirin compared to non-enteric-coated aspirin, with no difference in the overall area under the curve. There was no difference in the pharmacokinetics of aspirin between morning and evening dosing. CONCLUSION: There is a reduction in the total drug metabolite concentration of aspirin in pregnancy, and therefore a dose adjustment is potentially required in pregnant women. This is likely due to the altered pharmacokinetics of aspirin in pregnancy, with an increase in clearance. There was no difference in the total drug metabolite concentration of aspirin between enteric-coated and non-enteric-coated aspirin and between morning and evening dosing of aspirin. Further pharmacodynamic and clinical studies are required to examine the clinical relevance of these pharmacokinetic findings.


Asunto(s)
Aspirina/farmacocinética , Cronoterapia de Medicamentos , Inhibidores de Agregación Plaquetaria/farmacocinética , Embarazo/fisiología , Adulto , Área Bajo la Curva , Aspirina/administración & dosificación , Aspirina/uso terapéutico , Estudios de Casos y Controles , Relación Dosis-Respuesta a Droga , Femenino , Humanos , Inhibidores de Agregación Plaquetaria/administración & dosificación , Inhibidores de Agregación Plaquetaria/uso terapéutico , Preeclampsia/prevención & control , Comprimidos Recubiertos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA