Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Chem Sci ; 14(38): 10570-10579, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37799995

RESUMEN

Uncovering how host metal(loid)s mediate the immune response against invading pathogens is critical for better understanding the pathogenesis mechanism of infectious disease. Clinical data show that imbalance of host metal(loid)s is closely associated with the severity and mortality of COVID-19. However, it remains elusive how metal(loid)s, which are essential elements for all forms of life and closely associated with multiple diseases if dysregulated, are involved in COVID-19 pathophysiology and immunopathology. Herein, we built up a metal-coding assisted multiplexed serological metallome and immunoproteome profiling system to characterize the links of metallome with COVID-19 pathogenesis and immunity. We found distinct metallome features in COVID-19 patients compared with non-infected control subjects, which may serve as a biomarker for disease diagnosis. Moreover, we generated the first correlation network between the host metallome and immunity mediators, and unbiasedly uncovered a strong association of selenium with interleukin-10 (IL-10). Supplementation of selenium to immune cells resulted in enhanced IL-10 expression in B cells and reduced induction of proinflammatory cytokines in B and CD4+ T cells. The selenium-enhanced IL-10 production in B cells was confirmed to be attributable to the activation of ERK and Akt pathways. We further validated our cellular data in SARS-CoV-2-infected K18-hACE2 mice, and found that selenium supplementation alleviated SARS-CoV-2-induced lung damage characterized by decreased alveolar inflammatory infiltrates through restoration of virus-repressed selenoproteins to alleviate oxidative stress. Our approach can be readily extended to other diseases to understand how the host defends against invading pathogens through regulation of metallome.

2.
Zhongguo Zhong Yao Za Zhi ; 48(13): 3565-3575, 2023 Jul.
Artículo en Chino | MEDLINE | ID: mdl-37474990

RESUMEN

This study aimed to investigate the underlying mechanism of Zhenwu Decoction in the treatment of heart failure by regulating electrical remodeling through the transient outward potassium current(I_(to))/voltage-gated potassium(Kv) channels. Five normal SD rats were intragastrically administered with Zhenwu Decoction granules to prepare drug-containing serum, and another seven normal SD rats received an equal amount of distilled water to prepare blank serum. H9c2 cardiomyocytes underwent conventional passage and were treated with angiotensin Ⅱ(AngⅡ) for 24 h. Subsequently, 2%, 4%, and 8% drug-containing serum, simvastatin(SIM), and BaCl_2 were used to interfere in H9c2 cardiomyocytes for 24 h. The cells were divided into a control group [N, 10% blank serum + 90% high-glucose DMEM(DMEM-H)], a model group(M, AngⅡ + 10% blank serum + 90% DMEM-H), a low-dose Zhenwu Decoction-containing serum group(Z1, AngⅡ + 2% drug-containing serum of Zhenwu Decoction + 8% blank serum + 90% DMEM-H), a medium-dose Zhenwu Decoction-containing serum group(Z2, AngⅡ + 4% drug-containing serum of Zhenwu Decoc-tion + 6% blank serum + 90% DMEM-H), a high-dose Zhenwu Decoction-containing serum group(Z3, AngⅡ + 8% drug-containing serum of Zhenwu Decoction + 2% blank serum + 90% DMEM-H), an inducer group(YD, AngⅡ + SIM + 10% blank serum + 90% DMEM-H), and an inhibitor group(YZ, AngⅡ + BaCl_2 + 10% blank serum + 90% DMEM-H). The content of ANP in cell extracts of each group was detected by ELISA. The relative mRNA expression levels of ANP, Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 were detected by real-time quantitative PCR. The protein expression of Kv1.4, Kv4.2, Kv4.3, DPP6, and KChIP2 was detected by Western blot. I_(to) was detected by the whole cell patch-clamp technique. The results showed that Zhenwu Decoction at low, medium, and high doses could effectively reduce the surface area of cardiomyocytes. Compared with the M group, the Z1, Z2, Z3, and YD groups showed decreased ANP content and mRNA level, increased protein and mRNA expression of Kv4.2, Kv4.3, DPP6, and KChIP2, and decreased protein and mRNA expression of Kv1.4, and the aforementioned changes were the most notable in the Z3 group. Compared with the N group, the Z1, Z2, and Z3 groups showed significantly increased peak current and current density of I_(to). The results indicate that Zhenwu Decoction can regulate myocardial remodeling and electrical remodeling by improving the expression trend of Kv1.4, Kv4.2, Kv4.3, KChIP2, and DPP6 proteins and inducing I_(to) to regulate Kv channels, which may be one of the mechanisms of Zhenwu Decoction in treating heart failure and related arrhythmias.


Asunto(s)
Remodelación Atrial , Insuficiencia Cardíaca , Ratas , Animales , Miocitos Cardíacos , Ratas Sprague-Dawley , Insuficiencia Cardíaca/tratamiento farmacológico , Insuficiencia Cardíaca/metabolismo , ARN Mensajero/metabolismo , Potasio
3.
J Exp Clin Cancer Res ; 38(1): 423, 2019 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-31640796

RESUMEN

BACKGROUND: Galectins are beta-galactose specific binding proteins. In human cancers, including hepatocellular carcinoma (HCC), galectin-1 (Gal-1) is often found to be overexpressed. In order to combat the dismal diagnosis and death rates of HCC, gene silencing and targeted inhibition of Gal-1 was investigated for its improved therapeutic potential. METHODS: Cellular and secretory Gal-1 levels were analyzed using HCC clinical samples. The study of Gal-1 was carried by both knockdown and overexpression approaches. The stable clones were tested by in vitro assays and in vivo experiments. Mass spectrometry was used to identify downstream targets of Gal-1. The upstream regulator of Gal-1, microRNA-22 (miR-22) was characterized by functional assays. The therapeutic effect of inhibiting Gal-1 was also analyzed. RESULTS: Gal-1 overexpression was observed in HCC and correlated with aggressive clinicopathological features and poorer survival. The loss of Gal-1 resulted in hindered cell migration, invasion and anchorage independent growth. This was also observed in the animal models, in that when Gal-1 was knocked down, there were fewer lung metastases. Proteomic profiling of control and Gal-1 knockdown cells identified that the level of retention in endoplasmic reticulum 1 (RER1) was suppressed when Gal-1 level was reduced. The cell motility of Gal-1 knockdown cells was enhanced upon the rescue of RER1 expression. In HCC tissues, Gal-1 and RER1 expressions displayed a significant positive correlation. The upstream regulator of Gal-1, miR-22 was observed to be underexpressed in HCC tissues and negatively correlated with Gal-1. Silencing of miR-22 resulted in the upregulation of Gal-1 and enhanced cell growth, migration and invasion. However, such enhancement was abolished in cells treated with OTX008, an inhibitor of Gal-1. Combinational treatment of OTX008 and sorafenib significantly reduced tumor growth and size. CONCLUSIONS: Gal-1 overexpression was detected in HCC and this played a role in promoting tumorigenic processes and metastasis. The function of Gal-1 was found to be mediated through RER1. The correlations between miR-22, Gal-1 and RER1 expressions demonstrated the importance of miR-22 regulation on Gal-1/RER1 oncogenic activity. Lastly, the combinational treatment of OTX008 and sorafenib proved to be an improved therapeutic option compared to when administering sorafenib alone.


Asunto(s)
Calixarenos/uso terapéutico , Carcinoma Hepatocelular/genética , Galectina 1/efectos adversos , Neoplasias Hepáticas/genética , Sorafenib/uso terapéutico , Animales , Calixarenos/farmacología , Carcinoma Hepatocelular/patología , Humanos , Neoplasias Hepáticas/patología , Masculino , Ratones , Ratones Desnudos , Sorafenib/farmacología , Transfección
4.
BMC Complement Altern Med ; 19(1): 203, 2019 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-31391034

RESUMEN

BACKGROUND: 5-Florouracil (5-FU) is a commonly used chemotherapeutic drug for cholangiocarcinoma, whereas it has unsatisfactory effect, and patients often have chemo-resistance to it. The combination of chemotherapeutic agents and traditional Chinese medicine has already exhibited a promising application in oncotherapy. Huaier extract (Huaier) has been used in clinical practice widely, exhibiting good anti-tumor effect. This paper aims to investigate the possibility of combination 5-FU and Huaier as a treatment for cholangiocarcinoma. METHODS: A series of experiments were performed on the Huh28 cells in vitro, which involved cell proliferation, colony formation, apoptosis, cell cycle, migratory and invasive tests. Besides, western blots were also performed to examine the potential mechanism of 5-FU. RESULTS: The combination effect (antagonism, synergy or additive) was assessed using Chou-Talalay method. Using the CCK-8 and Colony formation assay, the anti-proliferation effect of 5-FU combined with Huaier was observed. Apoptosis inducing and cell cycle arrest effect of the combination of two drugs were assessed by flow cytometry. To determine the combined treatment on cell immigration and invasion ability, wound healing and Transwell assay were performed. The above experiment results suggest that the combined 5-FU and Huaier, compared with treatment using either drug alone, exhibited stronger effects in anti-proliferation, cycle arrest, apoptosis-induced and anti-metastasis. Further, western blot results reveal that the inhibition of STAT3 and its target genes (e.g. Ki67, Cyclin D1, Bcl-2 and MMP-2) might be set as the potential therapeutic targets. Besides, the inhibition of combination treatment in proteins expression associated with proliferation, apoptosis, cell cycle and metastasis was consistent with that of previous phenotypic experiments. CONCLUSIONS: Huaier combined with 5-FU exhibited a synergistic anti-tumor effect in Huh28 cell. Furthermore, the mechanisms might be associated with the activation and translocation of STAT3, as well as its downstream genes.


Asunto(s)
Antineoplásicos/farmacología , Colangiocarcinoma/fisiopatología , Mezclas Complejas/farmacología , Fluorouracilo/farmacología , Apoptosis/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Colangiocarcinoma/tratamiento farmacológico , Colangiocarcinoma/genética , Colangiocarcinoma/metabolismo , Ciclina D1/genética , Ciclina D1/metabolismo , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/fisiopatología , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Transducción de Señal/efectos de los fármacos , Trametes
5.
Sci Adv ; 5(8): eaav0198, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31453320

RESUMEN

Proinflammatory activation and accumulation of adipose tissue macrophages (ATMs) are associated with increased risk of insulin resistance in obesity. Here, we described the previously unidentified role of selenocysteine insertion sequence-binding protein 2 (SBP2) in maintaining insulin sensitivity in obesity. SBP2 was suppressed in ATMs of diet-induced obese mice and was correlated with adipose tissue inflammation. Loss of SBP2 initiated metabolic activation of ATMs, inducing intracellular reactive oxygen species content and inflammasome, which subsequently promoted IL-1ß-associated local proliferation and infiltration of proinflammatory macrophages. ATM-specific knockdown of SBP2 in obese mice promoted insulin resistance by increasing fat tissue inflammation and expansion. Reexpression of SBP2 improved insulin sensitivity. Last, an herbal formula that specifically induced SBP2 expression in ATMs can experimentally improve insulin sensitivity. Clinical observation revealed that it improved hyperglycemia in patients with diabetes. This study identified SBP2 in ATMs as a potential target in rescuing insulin resistance in obesity.


Asunto(s)
Tejido Adiposo/patología , Resistencia a la Insulina/fisiología , Macrófagos/metabolismo , Obesidad/patología , Proteínas de Unión al ARN/genética , Tejido Adiposo/citología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Movimiento Celular , Proliferación Celular , Medicamentos Herbarios Chinos/uso terapéutico , Técnicas de Inactivación de Genes , Humanos , Hiperglucemia/tratamiento farmacológico , Inflamasomas/metabolismo , Resistencia a la Insulina/genética , Interleucina-1beta/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Obesos , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Selenocisteína/genética , Adulto Joven
6.
J Proteome Res ; 17(7): 2470-2479, 2018 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-29812950

RESUMEN

Dehydroeffusol (DHE) is a phenanthrene isolated from the Chinese medicinal plant Juncus effusus. Biological evaluation of DHE reveals in vitro and in vivo anticancer effects. We performed a shotgun proteomic analysis using liquid chromatography-tandem mass spectrometry to investigate the changes in the protein profiles in cancer cells upon DHE treatment. DHE affected cancer-associated signaling pathways, including NF-κB, ß-catenin, and endoplasmic reticulum stress. Through quantitative pathway and key node analysis of the proteomics data, activating transcription factor 2 (ATF-2) and c-Jun kinase (JNK) were found to be the key components in DHE's modulated biological pathways. Based on the pathway analysis as well as chemical similarity to estradiol, DHE is proposed to be a phytoestrogen. The proteomic, bioinformatic, and chemoinformatic analyses were further verified with individual cell-based experiments. Our study demonstrates a workflow for identifying the mechanisms of action of DHE through shotgun proteomic analysis.


Asunto(s)
Antineoplásicos/farmacología , Fenantrenos/farmacología , Fitoquímicos/farmacología , Factor de Transcripción Activador 2/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neoplasias/patología , Fitoestrógenos , Poaceae/química , Proteómica/métodos , Transducción de Señal/efectos de los fármacos
7.
Nat Prod Rep ; 32(2): 256-72, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-25347695

RESUMEN

Cancer is one of the leading causes of death worldwide. Ginseng, a key ingredient in traditional Chinese medicine, shows great promise as a new treatment option. As listed by the U.S. National Institutes of Health as a complementary and alternative medicine, its anti-cancer functions are being increasingly recognized. This review covers the mechanisms of action of ginsenosides and their metabolites, which can modulate signaling pathways associated with inflammation, oxidative stress, angiogenesis, metastasis, and stem/progenitor-like properties of cancer cells. The emerging use of structurally modified ginsenosides and recent clinical studies on the use of ginseng either alone or in combination with other herbs or Western medicines which are exploited as novel therapeutic strategies will also be explored.


Asunto(s)
Neoplasias/tratamiento farmacológico , Panax/química , Ginsenósidos/química , Ginsenósidos/aislamiento & purificación , Ginsenósidos/farmacología , Estructura Molecular , National Institutes of Health (U.S.) , Estados Unidos
8.
Am J Transl Res ; 5(4): 412-26, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23724165

RESUMEN

SIRT1, a longevity regulator and NAD(+)-dependent deacetylase, plays a critical role in promoting metabolic fitness associated with calorie restriction and healthy ageing. Using a tissue-specific transgenic approach, the present study demonstrates that over-expression of human SIRT1 selectively in adipose tissue of mice prevents ageing-induced deterioration of insulin sensitivity and ectopic lipid distribution, reduces whole body fat mass and enhances locomotor activity. During ageing, the water-soluble vitamin biotin is progressively accumulated in adipose tissue. Over-expression of SIRT1 alleviates ageing-associated biotin accumulation and reduces the amount of biotinylated proteins, including acetyl CoA carboxylase, a major reservoir of biotin in adipose tissues. Chronic biotin supplementation increases adipose biotin contents and abolishes adipose SIRT1-mediated beneficial effects on insulin sensitivity, lipid metabolism and locomotor activity. Biochemical, spectrometric and chromatographic analysis revealed that biotin and its metabolites act as competitive inhibitors of SIRT1-mediated deacetylation. In summary, these results demonstrate that adipose SIRT1 is a key player in maintaining systemic energy homeostasis and insulin sensitivity; enhancing its activity solely in adipose tissue can prevent ageing-associated metabolic disorders.

9.
Am J Transl Res ; 3(5): 479-91, 2011.
Artículo en Inglés | MEDLINE | ID: mdl-22046489

RESUMEN

The gold (III) porphyrin complex, gold-2a, elicits anti-tumor activity by targeting the Wnt/ß-catenin signaling pathway [Chow KH et al, Cancer Research 2010;70(1):329-37]. Here, the molecular mechanisms underlying the inhibitory effects of this compound on WNT1 gene expression were elucidated further. A response element to gold-2a was identified located within the -1290 to -1112 nt region of the WNT1 promoter, containing a binding site for the transcription regulator Yin Yang 1 (YY1). Gold-2a promoted the association of YY1 and suppressor of zeste 12 (Suz12; a component of the polycomb repressor complex 2) with the WNT1 promoter. Under normal culture conditions, the intracellular translocalization of YY1 was synchronized with cell cycle progression and WNT1 expression. Gold-2a promoted the nuclear accumulation and abolished the nuclear exportation of YY1, resulting in a persistent inhibition of WNT1 expression and a cell cycle arrest at G1/S phase. A dimorphic role of YY1 in regulating cell proliferation and division was revealed. Thus, the present study extends the understanding of the anti-tumor mechanism of gold-2a to the epigenetic level, which involves the modulation of the dynamic interactions between YY1 and a specific region of the WNT1 promoter.

10.
Rapid Commun Mass Spectrom ; 25(19): 2837-43, 2011 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-21913262

RESUMEN

Tissue-spray ionization mass spectrometry is developed for the in situ chemical analysis of raw herbs under ambient conditions. We demonstrated that analyte molecules could be directly sprayed and ionized from solvent-wetted ginseng tissues upon the application of high electrical voltage to the tissue sample. Abundant phytochemicals/ metabolites, including ginsenosides, amino acids and oligosaccharides, could be detected from ginseng tissues when the tissue-spray experiments were conducted in positive ion mode. Thermally labile and easily hydrolyzed malonyl-ginsenosides were also detected in negative ion mode. The tissue-spray ionization method enables the direct detection of analytes from raw herb samples and preserves the sample integrity for subsequent morphological and/ or microscopic examination. In addition, this method is simple and fast for chemical profiling of wild-type and cultivated-type American ginsengs with differentiation.


Asunto(s)
Panax/química , Plantas Medicinales/química , Espectrometría de Masa por Ionización de Electrospray/métodos , Aminoácidos/análisis , Electricidad , Ginsenósidos/análisis , Microscopía Electrónica de Rastreo , Oligosacáridos/análisis , Panax/clasificación , Raíces de Plantas/química , Plantas Medicinales/clasificación , Estadísticas no Paramétricas
11.
Mol Cancer Ther ; 9(3): 718-30, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20197400

RESUMEN

Emerging evidence suggests that autophagic modulators have therapeutic potential. This study aims to identify novel autophagic inducers from traditional Chinese medicinal herbs as potential antitumor agents. Using an image-based screen and bioactivity-guided purification, we identified alisol B 23-acetate, alisol A 24-acetate, and alisol B from the rhizome of Alisma orientale as novel inducers of autophagy, with alisol B being the most potent natural product. Across several cancer cell lines, we showed that alisol B-treated cells displayed an increase of autophagic flux and formation of autophagosomes, leading to cell cycle arrest at the G(1) phase and cell death. Alisol B induced calcium mobilization from internal stores, leading to autophagy through the activation of the CaMKK-AMPK-mammalian target of rapamycin pathway. Moreover, the disruption of calcium homeostasis induces endoplasmic reticulum stress and unfolded protein responses in alisol B-treated cells, leading to apoptotic cell death. Finally, by computational virtual docking analysis and biochemical assays, we showed that the molecular target of alisol B is the sarcoplasmic/endoplasmic reticulum Ca(2+) ATPase. This study provides detailed insights into the cytotoxic mechanism of a novel antitumor compound.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Colestenonas/farmacología , Retículo Endoplásmico/efectos de los fármacos , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/antagonistas & inhibidores , Estrés Fisiológico/efectos de los fármacos , Animales , Antineoplásicos/farmacología , Células Cultivadas , Ensayos de Selección de Medicamentos Antitumorales , Retículo Endoplásmico/patología , Inhibidores Enzimáticos/farmacología , Células HeLa , Humanos , Concentración 50 Inhibidora , Ratones , Modelos Biológicos , Respuesta de Proteína Desplegada/efectos de los fármacos
12.
Inorg Chem ; 47(20): 9166-81, 2008 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-18800835

RESUMEN

Reduction of [Fe(III)(Por)Cl] (Por = porphyrinato dianion) with Na2S2O4 followed by reaction with excess PH2Ph, PH2Ad, or PHPh2 afforded [Fe(II)(F20-TPP)(PH2Ph)2] (1a), [Fe(II)(F20-TPP)(PH2Ad)2] (1b), [Fe(II)(F20-TPP)(PHPh2)2] (2a), and [Fe(II)(2,6-Cl2TPP)(PHPh2)2] (2b). Reaction of [Ru(II)(Pc)(DMSO)2] (Pc = phthalocyaninato dianion) with PH2Ph or PHPh2 gave [Ru(II)(Pc)(PH2Ph)2] (3a) and [Ru(II)(Pc)(PHPh2)2] (4). [Ru(II)(Pc)(PH2Ad)2] (3b) and [Ru(II)(Pc)(PH2Bu(t))2] (3c) were isolated by treating a mixture of [Ru(II)(Pc)(DMSO)2] and O=PCl2Ad or PCl2Bu(t) with LiAlH4. Hydrophosphination of CH2=CHR (R = CO2Et, CN) with [Ru(II)(F20-TPP)(PH2Ph)2] or [Ru(II)(F20-TPP)(PHPh2)2] in the presence of (t)BuOK led to the isolation of [Ru(II)(F20-TPP)(P(CH2CH2R)2Ph)2] (R = CO2Et, 5a; CN, 5b) and [Ru(II)(F20-TPP)(P(CH2CH2R)Ph2)2] (R = CO2Et, 6a; CN, 6b). Similar reaction of 3a with CH2=CHCN or MeI gave [Ru(II)(Pc)(P(CH2CH2CN)2Ph)2] (7) or [Ru(II)(Pc)(PMe2Ph)2] (8). The reactions of 4 with CH2=CHR (R = CO2Et, CN, C(O)Me, P(O)(OEt)2, S(O)2Ph), CH2=C(Me)CO2Me, CH(CO2Me)=CHCO2Me, MeI, BnCl, and RBr (R = (n)Bu, CH2=CHCH2, MeC[triple bond]CCH2, HC[triple bond]CCH2) in the presence of (t)BuOK afforded [Ru(II)(Pc)(P(CH2CH2R)Ph2)2] (R = CO2Et, 9a; CN, 9b; C(O)Me, 9c; P(O)(OEt)2, 9d; S(O)2Ph, 9e), [Ru(II)(Pc)(P(CH2CH(Me)CO2Me)Ph2)2] (9f), [Ru(II)(Pc)(P(CH(CO2Me)CH2CO2Me)Ph2)2] (9g), and [Ru(II)(Pc)(PRPh2)2] (R = Me, 10a; Bu(n), 10b; Bn, 10c; CH2CH=CH2, 10d; CH2C[triple bond]CMe, 10e; CH=C=CH2, 10f). X-ray crystal structure determinations revealed Fe-P distances of 2.2597(9) (1a) and 2.309(2) A (2bx 2 CH2Cl2) and Ru-P distances of 2.3707(13) (3b), 2.373(2) (3c), 2.3478(11) (4), and 2.3754(10) A (5b x 2 CH2Cl2). Both the crystal structures of 3b and 4 feature intermolecular C-H...pi interactions, which link the molecules into 3D and 2D networks, respectively.


Asunto(s)
Hemo/química , Hidrógeno/química , Compuestos Organometálicos/química , Fosfinas/química , Fosfinas/síntesis química , Fósforo/química , Alquenos/química , Cristalografía por Rayos X , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Espectrofotometría Ultravioleta
13.
J Proteome Res ; 6(12): 4703-10, 2007 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17975908

RESUMEN

It is generally believed that traditional Chinese medicine such as saponins has great value as potent cancer prevention and chemotherapeutic agents; however, the molecular basis for their activities is for the most part lacking. In the present study, we used proteomics to examine the cytotoxic effect of dioscin, a glucoside saponin, on human myeloblast leukemia HL-60 cells. Dioscin induced apoptosis in HL-60 cells in a time-dependent manner. Protein profiling of the microsomal fraction with enriched plasma membrane proteins isolated from HL-60 cells revealed that proteins act as chaperones and/or mediators of protein folding and were substantially altered in expression cells upon dioscin stimuli. Further biochemical study indicated that mitochondria dysfunction caused generation of reactive oxygen species (ROS), leading to the changes in protein expression. The mitochondrial transmembrane potential (DeltaPsi m) inhibitor aristolochic acid (ArA) partially abrogated the dioscin-initiated death receptor apoptosis pathway and cell death. The current study provided detailed evidence to support that dioscin is capable of inducing apoptosis in mammalian cells, in which the mitochondria-initiated apoptosis pathway plays an important role.


Asunto(s)
Antineoplásicos/farmacología , Diosgenina/análogos & derivados , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Proteómica , Especies Reactivas de Oxígeno/metabolismo , Saponinas/farmacología , Secuencia de Aminoácidos , Apoptosis/efectos de los fármacos , Diosgenina/farmacología , Células HL-60 , Humanos , Microsomas/efectos de los fármacos , Microsomas/metabolismo , Mitocondrias/metabolismo , Datos de Secuencia Molecular
14.
Anal Chem ; 79(7): 2745-55, 2007 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-17313187

RESUMEN

Matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) was developed for spatial profiling of phytochemicals and secondary metabolites in integrated herbal tissue without solvent extraction. Abundant alkaloid ions, including (+)-menisperine (m/z 356), magnoflorine (m/z 342), stepharanine (m/z 324), protonated sinomenine (m/z 330), protonated sinomendine (m/z 338), and a metabolite at m/z 314, could be directly desorbed from alpha-cyano-4-hydroxycinnamic acid- (CHCA-) coated stem tissue of Sinomenium acutum upon N2 laser (337 nm) ablation, while the ion signals desorbed from sinapinic acid- (SA-) coated and 2,5-dihydroxybenzoic acid- (DHB-) coated stem tissue were at least 10 times weaker. Solvent composition in the matrix solution could have significant effects on the ion intensity of the metabolites. Under optimized conditions that maximize the ion intensity and form homogeneous matrix crystals on the tissue surface, spatial distributions of the metabolites localized in different tissue regions, including cortex, phloem, xylem, rim, and pith, and their relative abundances could be semiquantitatively determined. The three metabolites detected at m/z 356, 342, and 314 showed specific distributions in the herbal samples collected from different growing areas, while others were not. By applying principal component analysis (PCA), the characteristic metabolites in specific tissue regions could be easily determined, allowing unambiguous differentiation of the herbal samples from different geographic locations.


Asunto(s)
Alcaloides/análisis , Medicamentos Herbarios Chinos/química , Sinomenium/química , Espectrometría de Masa por Láser de Matriz Asistida de Ionización Desorción/métodos , Estructura Molecular , Tamaño de la Partícula , Sensibilidad y Especificidad , Solventes/química
15.
Exp Gerontol ; 40(8-9): 716-27, 2005.
Artículo en Inglés | MEDLINE | ID: mdl-16139464

RESUMEN

As aged population dramatically increases in these decades, efforts should be made on the intervention for curing age-associated neurodegenerative diseases such as Alzheimer's disease (AD). Natural plant extracts of Lycium barbarum are well-known to exhibit anti-aging effects. We therefore hypothesized that they exhibit neuroprotective effects against toxins in aging-related neurodegenerative diseases. In this study, we aimed to investigate whether extracts from L. barbarum have neuroprotective effects against toxicity of fibrillar Abeta(1-42) and Abeta(25-35) fragments. Primary rat cortical neurons exposed to Abeta peptides resulted in apoptosis and necrosis. Pre-treatment with extract isolated from L. barbarum significantly reduced the release of lactate dehydrogenase (LDH). In addition, it attenuated Abeta peptide-activated caspases-3-like activity. The extract elicited a typical dose-dependent neuroprotective effect. Effective dosage of this extract was wider than that of a well-known western neuroprotective medicine lithium chloride (LiCl). We have further examined the underlying mechanisms of the neuroprotective effects. In agreement with other laboratories, Abeta peptides induce a rapid activation of c-Jun N-terminal kinase (JNK) by phosphorylation. Pre-treatment of aqueous extract markedly reduced the phosphorylation of JNK-1 (Thr183/Tyr185) and its substrates c-Jun-I (Ser 73) and c-Jun-II (Ser 63). Taken together, we have proved our hypothesis by showing neuroprotective effects of the extract from L. barbarum. Study on anti-aging herbal medicine like L. barbarum may open a new therapeutic window for the prevention of AD.


Asunto(s)
Enfermedad de Alzheimer/prevención & control , Péptidos beta-Amiloides/metabolismo , Encéfalo/metabolismo , Medicamentos Herbarios Chinos/farmacología , Medicina Tradicional de Asia Oriental , Fármacos Neuroprotectores/farmacología , Enfermedad de Alzheimer/metabolismo , Animales , Antimaníacos/farmacología , Apoptosis/efectos de los fármacos , Western Blotting/métodos , Encéfalo/efectos de los fármacos , Caspasa 3 , Caspasas/metabolismo , Células Cultivadas , Fragmentación del ADN/efectos de los fármacos , Cloruro de Litio/farmacología , Lycium/química , Neuronas/efectos de los fármacos , Neuronas/metabolismo , Extractos Vegetales/química , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA