Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
World J Gastroenterol ; 28(32): 4574-4599, 2022 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-36157934

RESUMEN

BACKGROUND: Radiotherapy and chemotherapy can kill tumor cells and improve the survival rate of cancer patients. However, they can also damage normal cells and cause serious intestinal toxicity, leading to gastrointestinal mucositis[1]. Traditional Chinese medicine is effective in improving the side effects of chemotherapy. Wumei pills (WMP) was originally documented in the Treatise on Exogenous Febrile Diseases. It has a significant effect on chronic diarrhea and other gastrointestinal diseases, but it is not clear whether it affects chemotherapy-induced intestinal mucositis (CIM). AIM: To explore the potential mechanism of WMP in the treatment of CIM through experimental research. METHODS: We used an intraperitoneal injection of 5-fluorouracil (5-Fu) to establish a CIM mouse model and an oral gavage of WMP decoction (11325 and 22650 mg/kg) to evaluate the efficacy of WMP in CIM. We evaluated the effect of WMP on CIM by observing the general conditions of the mice (body weight, food intake, spleen weight, diarrhea score, and hematoxylin and eosin stained tissues). The expression of tumor necrosis factor-α (TNF-α), interleukin-6 (IL-6), IL-1ß, and myeloperoxidase (MPO), as well as the Toll-like receptor 4/myeloid differentiation factor 88/nuclear factor-κB (TLR4/MyD88/NF-κB) signaling pathway proteins and tight junction proteins (zonula occludens-1, claudin-1, E-cadherin, and mucin-2) was determined. Furthermore, intestinal permeability, intestinal flora, and the levels of short-chain fatty acids (SCFA) were also assessed. RESULTS: WMP effectively improved the body weight, spleen weight, food intake, diarrhea score, and inflammatory status of the mice with intestinal mucositis, which preliminarily confirmed the efficacy of WMP in CIM. Further experiments showed that in addition to reducing the levels of TNF-α, IL-1ß, IL-6, and MPO and inhibiting the expression of the TLR4/MyD88/NF-κB pathway proteins, WMP also repaired the integrity of the mucosal barrier of mice, regulated the intestinal flora, and increased the levels of SCFA (such as butyric acid). CONCLUSION: WMP can play a therapeutic role in CIM by alleviating inflammation, restoring the mucosal barrier, and regulating gut microbiota.


Asunto(s)
Antineoplásicos , Microbioma Gastrointestinal , Mucositis , Animales , Antineoplásicos/uso terapéutico , Peso Corporal , Butiratos , Cadherinas/metabolismo , Claudina-1/metabolismo , Claudina-1/farmacología , Claudina-1/uso terapéutico , Diarrea/inducido químicamente , Diarrea/tratamiento farmacológico , Diarrea/patología , Medicamentos Herbarios Chinos , Eosina Amarillenta-(YS)/metabolismo , Eosina Amarillenta-(YS)/farmacología , Eosina Amarillenta-(YS)/uso terapéutico , Fluorouracilo/uso terapéutico , Hematoxilina/metabolismo , Hematoxilina/farmacología , Hematoxilina/uso terapéutico , Interleucina-6/metabolismo , Mucosa Intestinal/patología , Ratones , Mucina 2/metabolismo , Mucositis/inducido químicamente , Mucositis/tratamiento farmacológico , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/metabolismo , Peroxidasa/metabolismo , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
2.
Zhongguo Zhong Yao Za Zhi ; 45(3): 523-530, 2020 Feb.
Artículo en Chino | MEDLINE | ID: mdl-32237509

RESUMEN

Essential oils are easy to cause oxidative damage, chemical transformation or polymerization, and have some intrinsic problems, such as instability, low water solubility and low bioavailability, which restrict their application in the fields of product development. Nanostructured lipid carriers(NLCs) can overcome some of the restrictions of other colloidal carriers, such as emulsions, liposomes, polymer nanoparticles and solid lipid nanoparticles. NLC is an efficient and stable delivery system for bioactive substances. With unique lipid properties(mixture of solid and liquid lipid), it can overcome the disadvantages of essential oils and protect them from adverse environments, thus improving the stability, bioavailability and safety of essential oils, and achieve sustained release and controlled release. In EOs-NLCs system, essential oils, as special liquid lipid with biological activities and medicinal properties, can fully play the role of medicine-adjuvant integration by changing the structural characteristics of mixed lipid. Based on the development of nanocarriers system, this paper introduces the composition and structural characteristics of EOs-NLCs, and clarifies how to improve the stability of essential oils based on the effects of NLCs on physical and chemical properties, physical stability and release of active components of essential oils. In addition, it also introduces the application of the system in the fields of pharmaceutical, food, cosmetics and skin care products. This review aims to provide some references for improving the stability of essential oils and their applications by using NLCs.


Asunto(s)
Portadores de Fármacos , Nanoestructuras , Aceites Volátiles , Emulsiones , Lípidos , Liposomas , Tamaño de la Partícula
3.
J Zhejiang Univ Sci B ; 18(7): 597-604, 2017 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-28681584

RESUMEN

Marsdeniae tenacissimae extract (MTE) has been used as an adjuvant medicine for cancer therapy for a long time. Although massive studies demonstrated its considerable anti-cancer effect, there is no research on its influence on erythrocytes, which are firstly interacted with MTE in the circulation. To investigate the influence of MTE on erythrocytes, we used a flow cytometer to detect the MTE-treated alternations of morphology, calcium concentration, and reactive oxygen species (ROS) level in erythrocytes. We used hemolysis under different osmotic solutions to evaluate the fragility of erythrocytes. Data showed that MTE treatment dose-dependently increased the ratio of erythrocyte fragmentation (P<0.001) and shrinking, and elevated the forward scatter (FSC) value (P<0.001) and calcium accumulation (P<0.001). MTE induced ROS production of erythrocytes under the high glucose condition (P<0.01) and consequently caused a rise in fragility (P<0.05). These results suggest that MTE induces cytotoxicity and aging in erythrocytes in a dose-dependent manner, and presents the possibility of impairment on cancer patients' circulating erythrocytes when MTE is used as an anti-cancer adjuvant medicine.


Asunto(s)
Antineoplásicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Eritrocitos/efectos de los fármacos , Marsdenia/química , Extractos Vegetales/farmacología , Apoptosis/efectos de los fármacos , Calcio/metabolismo , Senescencia Celular , Quimioterapia Adyuvante , Relación Dosis-Respuesta a Droga , Eritrocitos/citología , Citometría de Flujo , Glucosa/análisis , Hemólisis , Humanos , Neoplasias/tratamiento farmacológico , Especies Reactivas de Oxígeno/metabolismo , Dispersión de Radiación
4.
Medicine (Baltimore) ; 96(11): e6375, 2017 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28296779

RESUMEN

The mortality rate caused by organophosphate (OP) poisoning is still high, even the standard treatment such as atropine and oxime improves a lot. To search for alternative therapies, this study was aimed to investigate the effects of packed red blood cell (RBC) transfusion in acute OP poisoning, and compare the therapeutic effects of RBCs at different storage times.Patients diagnosed with OP poisoning were included in this prospective study. Fresh RBCs (packed RBCs stored less than 10 days) and longer-storage RBCs (stored more than 10 days but less than 35 days) were randomly transfused or not into OP poisoning patients. Cholinesterase (ChE) levels in blood, atropine usage and durations, pralidoxime durations were measured.We found that both fresh and longer-storage RBCs (200-400 mL) significantly increased blood ChE levels 6 hours after transfusion, shortened the duration for ChE recovery and length of hospital stay, and reduced the usage of atropine and pralidoxime. In addition, fresh RBCs demonstrated stronger therapeutic effects than longer-storage RBCs.Packed RBCs might be an alternative approach in patients with OP poisoning, especially during early stages.


Asunto(s)
Transfusión de Eritrocitos/métodos , Intoxicación por Organofosfatos/terapia , Enfermedad Aguda , Atropina/uso terapéutico , Reactivadores de la Colinesterasa/uso terapéutico , Colinesterasas/sangre , Femenino , Lavado Gástrico , Humanos , Masculino , Intoxicación por Organofosfatos/tratamiento farmacológico , Compuestos de Pralidoxima/uso terapéutico , Estudios Prospectivos , Factores de Tiempo
5.
Chin J Nat Med ; 14(12): 922-930, 2016 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28262119

RESUMEN

Marsdeniae tenacissimae extract (MTE), commonly known as Xiao-Ai-Ping in China, is a traditional Chinese herb medicine capable of inhibiting proliferation and metastasis and boosting apoptosis in various cancer cells. However, little is known about the contribution of MTE towards tumor angiogenesis and the underlying mechanism. The present study aimed to evaluate the effects of MTE on the proliferation and apoptosis of human umbilical vein endothelial cells (HUVECs) and the molecular mechanism. 3-(4,5-dimethylthiazol-2-yl)-5(3-carboxymethoxyphenyl)-2-(4-sulfopheny)-2H-tetrazolium, inner salt (MTS) and PI-stained flow cytometry assays revealed that MTE dose-dependently reduced the proliferation of HUVECs by arresting cell cycle at S phase (P < 0.05). Annexin V-FITC/PI-stained flow cytometry confirmed that MTE (160 µL·L-1) enhanced the apoptosis of HUVECs significantly (P < 0.001). Real-time quantitative RT-PCR and Western blot analyses showed an increase in Bax expression and a sharply decline in Bcl-2 expression; caspase-3 was activated simultaneously in a dose-dependent manner (P < 0.05). Further study observed the dose-dependent down-regulation of vascular endothelial growth factor (VEGF) receptor-2 (VEGFR-2), P2Y6 receptor (P2Y6R), and chemokine (C-C motif) ligand 2 (CCL-2), along with the activation of PKC Δ and up-regulation of p53 in a dose-dependent manner in MTE-treated selected cells (P < 0.05). Collectively, the results from the present study suggested that MTE suppressed the proliferation by attenuating CCL-2-mediated VEGF/VEGFR2 interactions and promoted the apoptosis through PKCΔ-induced p53-dependent mitochondrial pathway in HUVECs, supporting that MTE may be developed as a potent anti-cancer medicine.


Asunto(s)
Apoptosis/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/citología , Marsdenia/química , Extractos Vegetales/farmacología , Transducción de Señal , Ciclo Celular/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Proteína Quinasa C/genética , Proteína Quinasa C/metabolismo , Transducción de Señal/efectos de los fármacos , Factor A de Crecimiento Endotelial Vascular/genética , Factor A de Crecimiento Endotelial Vascular/metabolismo , Receptor 2 de Factores de Crecimiento Endotelial Vascular/genética , Receptor 2 de Factores de Crecimiento Endotelial Vascular/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA