Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 37(5): 1986-1996, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36609866

RESUMEN

This study was designed to evaluate antiplatelet effect and therapeutic effect of ginkgo diterpene lactone meglumine injection (GDLI) in acute ischemic stroke (AIS) patients. In this randomized, double-blind, placebo-controlled trial, we randomly assigned 70 inpatients within 48 hr after the onset of AIS to combination therapy with GDLI and aspirin (GDLI at a dose of 25 mg/d for 14 days plus aspirin at a dose of 100 mg/d for 90 days) or to placebo plus aspirin in a ratio of 1:1. Platelet function, the National Institute of Health Stroke Scale (NIHSS), and the modified Rankin Scale (mRS) were evaluated. A good outcome was defined as NIHSS scores decrease ≥5 or mRS scores decrease ≥2. Results showed that arachidonic acid induced maximum platelet aggregation rate (AA-MAR) and mean platelet volume (MPV) of the GDLI-aspirin group were much lower than that of the aspirin group (p = 0.013 and p = 0.034, respectively) after the 14-day therapy. The combination of GDLI and aspirin was superior to aspirin alone, and had significant impact on the good outcome at day 90 (ORadj 7.21 [95%CI, 1.03-50.68], p = 0.047). In summary, GDLI has antiplatelet effect and can improve the prognosis of AIS patients.


Asunto(s)
Accidente Cerebrovascular Isquémico , Accidente Cerebrovascular , Humanos , Inhibidores de Agregación Plaquetaria/farmacología , Inhibidores de Agregación Plaquetaria/uso terapéutico , Accidente Cerebrovascular/tratamiento farmacológico , Accidente Cerebrovascular Isquémico/tratamiento farmacológico , Ginkgo biloba , Aspirina/farmacología , Aspirina/uso terapéutico
2.
Bioresour Technol ; 363: 127881, 2022 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-36067896

RESUMEN

Activated carbon (AC) has attracted much attention owing to its low cost and abundant sources. In this paper, three monometallic supported catalysts were prepared using AC as support (Ce/AC, Fe/AC, Ni/AC), and the effects of three catalysts on the microwave co-pyrolysis of Chlorella vulgaris (C. vulgaris) with high density polyethylene (HDPE) were studied. The results showed that the co-pyrolysis characteristics of C. vulgaris/HDPE = 1:1 (C1HP1) were significantly improved by three catalysts at high additions (>20 %). Among them, the C1HP1 group with 50 % Fe/AC addition had the shortest co-pyrolysis reaction time (2901 s). Besides, Ce/AC and Fe/AC have a promoting effect on bio-oil yields, while Ni/AC has an inhibiting effect. The maximum bio-oil yield (25.6 %) was obtained under 40 % addition of Fe/AC. Moreover, Ce/AC obtained the highest hydrocarbons content (66.68 %), while Fe/AC obtained the highest aromatic hydrocarbons content (36.64 %). Additionally, Ce/AC had the highest deoxygenation efficiency (47.33 %) and denitrification efficiency (42.28 %).


Asunto(s)
Chlorella vulgaris , Pirólisis , Biocombustibles , Catálisis , Carbón Orgánico , Calor , Hidrocarburos , Microondas , Aceites de Plantas , Polietileno , Polifenoles
3.
Bioresour Technol ; 360: 127550, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35779745

RESUMEN

Co-pyrolysis of Chlorella vulgaris (CV) and Oily sludge (OS) under different mixing ratios were investigated by microwave furnace. NiO, activated carbon (AC) and their 1:1 compound (N1A1) with different additions (5%, 10%, 15% and 20%) were selected as microwave additives to study the effects on optimum mixing ratio of co-pyrolysis. The results indicated that mixing ratio of CV/OS = 1:1 (C1O1) was optimum for co-pyrolysis. Besides, 10% AC was optimal on improving pyrolysis characteristics of the C1O1 group. The most significant synergistic interaction of NiO and AC occurred in the 10% N1A1 group. Moreover, hydrocarbons in bio-oil of the C1O1 group increased by 31.84% compared with theoretical values, while nitrogenous, oxygenated compounds decreased by 74.18% and 19.01%. Addition of 10% N1A1 in the C1O1 group increased aliphatic hydrocarbons by 22.44%, and decreased nitrogenous, oxygenated compounds by 41.79% and 36.58%. Overall, 10% N1A1 was conducive for the C1O1 group to obtain high-quality bio-oil.


Asunto(s)
Chlorella vulgaris , Pirólisis , Biocombustibles , Catálisis , Carbón Orgánico , Calor , Hidrocarburos , Microondas , Aceites de Plantas , Polifenoles , Aguas del Alcantarillado
4.
New Phytol ; 232(2): 835-852, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34289124

RESUMEN

Despite a much higher proportion of intragenic heterochromatin-containing genes in crop genomes, the importance of intragenic heterochromatin in crop development remains unclear. Intragenic heterochromatin can be recognised by a protein complex, ASI1-AIPP1-EDM2 (AAE) complex, to regulate alternative polyadenylation. Here, we investigated the impact of rice ASI1 on global poly(A) site usage through poly(A) sequencing and ASI1-dependent regulation on rice development. We found that OsASI1 is essential for rice pollen development and flowering. OsASI1 dysfunction has an important impact on global poly(A) site usage, which is closely related to heterochromatin marks. Intriguingly, OsASI1 interacts with the intronic heterochromatin of OsXRNL, a nuclear XRN family exonuclease gene involved in the processing of an miRNA precursor, to promote the processing of full-length OsXRNL and regulate miRNA abundance. We found that OsASI1-mediated regulation of pollen development partially depends on OsXRNL. Finally, we characterised the rice AAE complex and its involvement in alternative polyadenylation and pollen development. Our findings help to elucidate an epigenetic mechanism governing miRNA abundance and rice development, and provide a valuable resource for studying the epigenetic mechanisms of many important processes in crops.


Asunto(s)
MicroARNs , Oryza , Regulación de la Expresión Génica de las Plantas , Heterocromatina/genética , MicroARNs/genética , Oryza/genética , Polen/genética , Poliadenilación
5.
Front Pharmacol ; 12: 671783, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34295249

RESUMEN

Background: Stroke is the second leading cause of death in human life health, but current treatment strategies are limited to thrombolytic therapy, and because of the tight time window, many contraindications, and only a very small number of people can benefit from it, new therapeutic strategies are needed to solve this problem. As a physical barrier between the central nervous system and blood, the blood-brain barrier (BBB) maintains the homeostasis of the central nervous system. Maintaining the integrity of the BBB may emerge as a new therapeutic strategy. Liquiritin (LQ) is a flavonoid isolated from the medicinal plant Glycyrrhiza uralensis Fisch. ex DC. (Fabaceae), and this study aims to investigate the protective effects of LQ on brain microvascular endothelial cells (BMECs), to provide a new therapeutic strategy for stroke treatment, and also to provide research ideas for the development of traditional Chinese medicine (TCM). Methods: The protective effects of LQ on HBMECs under the treatment of hypoxia reoxygenation (H/R) were investigated from different aspects by establishing a model of H/R injury to mimic ischemia-reperfusion in vivo while administrating different concentrations of LQ, which includes: cell proliferation, migration, angiogenesis, mitochondrial membrane potential as well as apoptosis. Meanwhile, the mechanism of LQ to protect the integrity of BBB by antioxidation and inhibiting endoplasmic reticulum (ER) stress was also investigated. Finally, to search for possible targets of LQ, a proteomic analysis approach was employed. Results: LQ can promote cell proliferation, migration as well as angiogenesis and reduce mitochondrial membrane potential damage and apoptosis. Meanwhile, LQ can also reduce the expression of related adhesion molecules, and decrease the production of reactive oxygen species. In terms of mechanism study, we demonstrated that LQ could activate Keap1/Nrf2 antioxidant pathway, inhibit ER stress, and maintain the integrity of BBB. Through differential protein analysis, 5 disease associated proteins were found. Conclusions: Studies have shown that LQ can promote cell proliferation, migration as well as angiogenesis, and reduce cell apoptosis, which may be related to its inhibition of oxidative and ER stress, and then maintain the integrity of BBB. Given that five differential proteins were found by protein analysis, future studies will revolve around the five differential proteins.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA