Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
BMC Plant Biol ; 19(1): 542, 2019 Dec 05.
Artículo en Inglés | MEDLINE | ID: mdl-31805858

RESUMEN

BACKGROUND: In water lily (Nymphaea) hybrid breeding, breeders often encounter non-viable seeds, which make it difficult to transfer desired or targeted genes of different Nymphaea germplasm. We found that pre-fertilization barriers were the main factor in the failure of the hybridization of Nymphaea. The mechanism of low compatibility between the pollen and stigma remains unclear; therefore, we studied the differences of stigma transcripts and proteomes at 0, 2, and 6 h after pollination (HAP). Moreover, some regulatory genes and functional proteins that may cause low pollen-pistil compatibility in Nymphaea were identified. RESULTS: RNA-seq was performed for three comparisons (2 vs 0 HAP, 6 vs 2 HAP, 6 vs 0 HAP), and the number of differentially expressed genes (DEGs) was 8789 (4680 were up-regulated), 6401 (3020 were up-regulated), and 11,284 (6148 were up-regulated), respectively. Using label-free analysis, 75 (2 vs 0 HAP) proteins (43 increased and 32 decreased), nine (6 vs 2 HAP) proteins (three increased and six decreased), and 90 (6 vs 0 HAP) proteins (52 increased and 38 decreased) were defined as differentially expressed proteins (DEPs). Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses revealed that the DEGs and DEPs were mainly involved in cell wall organization or biogenesis, S-adenosylmethionine (SAM) metabolism, hydrogen peroxide decomposition and metabolism, reactive oxygen species (ROS) metabolism, secondary metabolism, secondary metabolite biosynthesis, and phenylpropanoid biosynthesis. CONCLUSIONS: Our transcriptomic and proteomic analysis highlighted specific genes, incuding those in ROS metabolism, biosynthesis of flavonoids, SAM metabolism, cell wall organization or biogenesis and phenylpropanoid biosynthesis that warrant further study in investigations of the pollen-stigma interaction of water lily. This study strengthens our understanding of the mechanism of low pollen-pistil compatibility in Nymphaea at the molecular level, and provides a theoretical basis for overcoming the pre-fertilization barriers in Nymphaea in the future.


Asunto(s)
Flores/fisiología , Nymphaea/fisiología , Fitomejoramiento , Proteoma/fisiología , Transcriptoma/fisiología , Ontología de Genes , Hibridación Genética , Nymphaea/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Polen/fisiología
2.
Ying Yong Sheng Tai Xue Bao ; 30(1): 259-265, 2019 Jan 20.
Artículo en Chino | MEDLINE | ID: mdl-30907548

RESUMEN

To identify the high yield planting date and pinching pattern, we compared the yields of five new varieties (lines) of tea-applied chrysanthemum, the ‘Suju 10’, ‘Suju 12’, ‘Suju 13’, ‘CH1-44’ and ‘CH5-13’. A field experiment with split-split plot design was carried out. The main plot treatments including three (early, middle and late) planting dates, split-plot treatments including 5 new varieties (lines), and split-split-plot treatments including four different kinds of pinching schemes. The results showed that the yield of ‘CH5-13’ and ‘Suju 13’ was relatively higher among the five varieties (lines), followed by ‘CH1-44’ and ‘Suju10’, and ‘Suju 12’ showed the lowest yield. Among the five varieties (lines), planting date on May 27th and two-time pinching treatments showed the highest values of plant height, crown width, flower number, flower diameter, fresh mass, yield per plant and yield per unit area. Compared with the planting date on May 7th and June 13th, the above indexes increased by 16.0% and 19.0%, 18.0% and 22.8%, 36.7% and 42.2%, 11.1% and 2.3%, 13.0% and 4.0%, 47.8% and 36.6%, 48.5% and 36.7%, respectively. With the pinching time postponed, plant height decreased. Compared with the no pinching treatment, plant height of the two-time pinching treatment decreased by 50.2%, and values of crown width, flowers number, the flower fresh mass, the yield per plant and the yield per unit area were highest, with increases of 17.0%, 29.1%, 5.5%, 34.0% and 34.8%, respectively. The impact performance of three main factors on the growth and yield of the tea-applied chrysanthemum was in order of planting date>varieties>pinching time.


Asunto(s)
Agricultura/métodos , Chrysanthemum/crecimiento & desarrollo ,
3.
ScientificWorldJournal ; 2014: 625658, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24592176

RESUMEN

There has been a heated argument over self-incompatibilityof chrysanthemum (Chrysanthemum morifolium) among chrysanthemum breeders. In order to solve the argument, we investigated pistil receptivity, seed set, and compatible index of 24 chrysanthemum cultivars. It was found that the 24 cultivars averagely had 3.7-36.3 pollen grains germinating on stigmas at 24 hours after self-pollination through the fluorescence microscope using aniline blue staining method. However, only 10 of them produced self-pollinated seeds, and their seed sets and compatible indexes were 0.03-56.50% and 0.04-87.50, respectively. The cultivar "Q10-33-1" had the highest seed set (56.50%) and compatible index (87.50), but ten of its progeny had a wide range of separation in seed set (0-37.23%) and compatible index (0-68.65). The results indicated that most of chrysanthemum cultivars were self-incompatible, while a small proportion of cultivars were self-compatible. In addition, there is a comprehensive separation of self-incompatibility among progeny from the same self-pollinated self-compatible chrysanthemum cultivar. Therefore, it is better to emasculate inflorescences during chrysanthemum hybridization breeding when no information concerning its self-incompatibility characteristics is available. However, if it is self-incompatible and propagated by vegetative methods, it is unnecessary to carry out emasculation when it is used as a female plant during hybridization breeding.


Asunto(s)
Chrysanthemum/fisiología , Autoincompatibilidad en las Plantas con Flores , Chrysanthemum/genética , Germinación , Endogamia , Polen/citología , Polen/fisiología , Polinización
4.
BMC Plant Biol ; 14: 5, 2014 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-24393236

RESUMEN

BACKGROUND: Spray cut chrysanthemum is a vital flower with high ornamental value and popularity in the world. However, the excessive quantity of pollen dispersal of most spray cut chrysanthemum is an adverse factor during its flowering stage, and can significantly reduce its ornamental value and quickly shorten its vase life. More seriously, excessive pollen grains in the air are usually harmful to people, especially for those with pollen allergies. Therefore, in order to obtain some valuable information for developing spray cut chrysanthemum with less-dispersed or non-dispersed pollen in the future breeding programs, we here investigated the factors affecting quantity of pollen dispersal of spray cut chrysanthemum with four cultivars, i.e. 'Qx-097', 'Noa', 'Qx-115', and 'Kingfisher', that have different quantity of pollen dispersal. RESULTS: 'Qx-097' with high quantity of pollen dispersal has 819 pollen grains per anther, 196.4 disk florets per inflorescence and over 800,000 pollen grains per inflorescence. The corresponding data for 'Noa' with low quantity of pollen dispersal are 406, 175.4 and over 350,000, respectively; and 219, 144.2 and nearly 160,000 for 'Qx-115' without pollen dispersal, respectively. 'Kingfisher' without pollen dispersal has 202.8 disk florets per inflorescence, but its anther has no pollen grains. In addition, 'Qx-097' has a very high degree of anther cracking that nearly causes a complete dispersal of pollen grains from its anthers. 'Noa' has a moderate degree of anther cracking, and pollen grains in its anthers are not completely dispersed. However, the anthers of 'Qx-115' and 'Kingfisher' do not crack at all. Furthermore, microsporogenesis and pollen development are normal in 'Qx-097', whereas many microspores or pollen degenerate in 'Noa', most of them abort in 'Qx-115', and all of them degrade in 'Kingfisher'. CONCLUSIONS: These results suggest that quantity of pollen dispersal in spray cut chrysanthemum are mainly determined by pollen quantity per anther, and capacity of pollen dispersal. Abnormality during microsporogenesis and pollen development significantly affects pollen quantity per anther. Capacity of pollen dispersal is closely related to the degree of anther dehiscence. The entire degeneration of microspore or pollen, or the complete failure of anther dehiscence can cause the complete failure of pollen dispersal.


Asunto(s)
Chrysanthemum/fisiología , Polen/fisiología , Chrysanthemum/anatomía & histología , Flores/anatomía & histología , Flores/fisiología
5.
ScientificWorldJournal ; 2013: 309808, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24235883

RESUMEN

Effects of salt stress on Artemisia scoparia and A. vulgaris "Variegate" were examined. A. scoparia leaves became withered under NaCl treatment, whereas A. vulgaris "Variegate" leaves were not remarkably affected. Chlorophyll content decreased in both species, with a higher reduction in A. scoparia. Contents of proline, MDA, soluble carbohydrate, and Na(+) increased in both species under salt stress, but A. vulgaris "Variegate" had higher level of proline and soluble carbohydrate and lower level of MDA and Na(+). The ratios of K(+)/Na(+), Ca(2+)/Na(+), and Mg(2+)/Na(+) in A. vulgaris "Variegate" under NaCl stress were higher. Moreover, A. vulgaris "Variegate" had higher transport selectivity of K(+)/Na(+) from root to stem, stem to middle mature leaves, and upper newly developed leaves than A. scoparia under NaCl stress. A. vulgaris "Variegate" chloroplast maintained its morphological integrity under NaCl stress, whereas A. scoparia chloroplast lost integrity. The results indicated that A. scoparia is more sensitive to salt stress than A. vulgaris "Variegate." Salt tolerance is mainly related to the ability of regulating osmotic pressure through the accumulation of soluble carbohydrates and proline, and the gradient distribution of K(+) between roots and leaves was also contributed to osmotic pressure adjustment and improvement of plant salt tolerance.


Asunto(s)
Artemisia/metabolismo , Cloroplastos/metabolismo , Presión Osmótica/efectos de los fármacos , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Cloruro de Sodio/farmacología , Artemisia/crecimiento & desarrollo , Cationes Bivalentes/metabolismo , Cationes Monovalentes/metabolismo , Metales/metabolismo , Hojas de la Planta/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Tolerancia a la Sal/efectos de los fármacos
6.
BMC Plant Biol ; 12: 82, 2012 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-22676293

RESUMEN

BACKGROUND: Breeding programs for the water lotus (Nelumbo nucifera) are hampered by an inability to account for variation in seed set associated with crosses between different cultivars. We studied seed set in two reciprocal crosses between lotus cultivars ('Guili' × 'Aijiangnan' and 'Molingqiuse' × 'Qinhuaiyanzhi') to obtain insights into factors that govern fecundity in these experimental hybrids. Pollen viability, stigma receptivity and embryo development were compared for each hybrid and reciprocal cross. RESULTS: Pollen viability of the individual cultivars ranged from 4.1% to 20.2%, with the highest level (>11.9%) for all cultivars observed from the earliest collected grains (05:00-06:00 a.m.). Stigmatic pollen germination peaked at 4 h after pollination and varied from 4.8 to 60.6 grains per stigma among the crosses. Production of normal embryos ranged from 7.6% to 58.8% at 1 d after pollination and from 0 to 25% by 11 d after pollination. Seed set in crosses (0.2-23.3%) was generally lower than in open-pollinated plants (8.4-26.5%). Similar to the germination results, seed set was substantially reduced in both reciprocal crosses. CONCLUSIONS: These results suggested that poor pollen fertility, low stigma receptivity, and embryo abortion were responsible for the failure of the crosses 'Molingqiuse' × 'Qinhuaiyanzhi', 'Qinhuaiyanzhi' × 'Molingqiuse', and 'Aijiangnan' × 'Guili'.


Asunto(s)
Cruzamientos Genéticos , Nelumbo/embriología , Óvulo Vegetal/fisiología , Cruzamiento/métodos , Supervivencia Celular , Fertilidad , Germinación , Nelumbo/anatomía & histología , Nelumbo/fisiología , Óvulo Vegetal/anatomía & histología , Óvulo Vegetal/embriología , Polen/fisiología , Polinización , Semillas/embriología , Semillas/fisiología , Especificidad de la Especie
7.
ScientificWorldJournal ; 2012: 678706, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22629182

RESUMEN

Seed set is usually low and differs for different crosses of flower lotus (Nelumbo nucifera Gaertn.). The reasons remain unknown, and this has a negative impact on lotus breeding. To determine the causes, we carried out two crosses of flower lotus, that is, "Jinsenianhua" × "Qinhuaihuadeng" and "Qinhuaihuadeng" × "Jinsenianhua" and pollen viability, pistil receptivity, and embryo development were investigated. The pollen grains collected at 05:00-06:00 hrs had the highest viability, and the viabilities of "Jinsenianhua" and "Qinhuaihuadeng" were 20.6 and 15.7%, respectively. At 4 h after artificial pollination, the number of pollen grains germinating on each stigma reached a peak: 63.0 and 17.2 per stigma in "Jinsenianhua" × "Qinhuaihuadeng" and "Qinhuaihuadeng" × "Jinsenianhua", respectively. At 1 d after artificial pollination, the percentages of normal embryos in the two crosses were 55.0 and 21.9%, respectively; however, at 11 d after pollination, the corresponding percentages were 20.8 and 11.2%. Seed sets of the two crosses were 17.9 and 8.0%, respectively. The results suggested that low pistil receptivity and embryo abortion caused low seed set in "Qinhuaihuadeng" × "Jinsenianhua", whereas low fecundity of "Jinsenianhua" × "Qinhuaihuadeng" was mainly attributable to embryo abortion.


Asunto(s)
Fertilización/fisiología , Flores/fisiología , Hibridación Genética/fisiología , Nelumbo/embriología , Nelumbo/fisiología , Polen/fisiología , Semillas/crecimiento & desarrollo , Supervivencia Celular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA