Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Glob Chang Biol ; 28(24): 7353-7365, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36056683

RESUMEN

Carbon (C):nitrogen (N):phosphorus (P) stoichiometry in plants, soils, and microbial biomass influences productivity and nutrient cycling in terrestrial ecosystems. Anthropogenic inputs of P to ecosystems are increasing; however, our understanding of the impacts of P addition on terrestrial ecosystem C:N:P ratios remains elusive. By conducting a meta-analysis with 1413 paired observations from 121 publications, we showed that P addition significantly decreased plant, soil, and microbial biomass N:P and C:P ratios, but had negligible effects on C:N ratios. The reductions in N:P and C:P ratios became more evident as the P application rates and experimental duration increased. The P addition effects on terrestrial ecosystem C:N:P stoichiometry did not vary with ecosystem types or climates. Moreover, the responses of N:P and C:P ratios in soil and microbial biomass were associated with the responses of soil pH and fungi:bacteria ratios. Additionally, P additions increased net primary productivity, microbial biomass, soil respiration, N mineralization, and N nitrification, but decreased ammonium and nitrate contents. Decreases in plant N:P and C:P ratios were both negatively correlated to net primary productivity and soil respiration, but positively correlated to ammonium and nitrate contents; microbial biomass, soil respiration, ammonium contents, and nitrate contents all increased with declining soil N:P and C:P ratios. Our findings highlight that P additions could imbalance C:N:P stoichiometry and potentially impact the terrestrial ecosystem functions.


Asunto(s)
Compuestos de Amonio , Fósforo , Fósforo/química , Ecosistema , Nitratos , Nitrógeno/análisis , Suelo/química , Carbono/química , Biomasa , Microbiología del Suelo , Plantas
2.
Nat Ecol Evol ; 6(8): 1112-1121, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35760890

RESUMEN

Soil phosphorus (P) availability is critical to plant productivity in many terrestrial ecosystems. How soil P availability responds to changes in plant diversity remains uncertain, despite the global crisis of rapid biodiversity loss. Our meta-analysis based on 180 studies across various ecosystems (croplands, grasslands, forests and pot experiments) shows that, on average, soil total P, phosphatase activity and available P are 6.8%, 8.5% and 4.6%, respectively, higher in species mixtures than in monocultures. The mixture effect on phosphatase activity becomes more positive with increasing species and functional group richness, with more pronounced increases in the rhizosphere than in the bulk soil. The mixture effects on soil-available P in the bulk soil do not change, but with increasing species or functional group richness these effects in the rhizosphere soil shift from positive to negative. Nonetheless, enhanced soil phosphatase activity stimulated available P in diverse species mixtures, offsetting increased plant uptake effects that decrease soil-available P. Moreover, the enhancement effects of species richness on soil phosphatase activity are positively associated with increased plant productivity. Our findings highlight that preserving plant diversity could increase soil phosphatase activity and P availability, which sustain the current and future productivity of terrestrial ecosystems.


Asunto(s)
Ecosistema , Suelo , Monoéster Fosfórico Hidrolasas , Fósforo , Plantas
3.
Nat Commun ; 12(1): 4562, 2021 07 27.
Artículo en Inglés | MEDLINE | ID: mdl-34315908

RESUMEN

Plant and soil C:N:P ratios are of critical importance to productivity, food-web dynamics, and nutrient cycling in terrestrial ecosystems worldwide. Plant diversity continues to decline globally; however, its influence on terrestrial C:N:P ratios remains uncertain. By conducting a global meta-analysis of 2049 paired observations in plant species mixtures and monocultures from 169 sites, we show that, on average across all observations, the C:N:P ratios of plants, soils, soil microbial biomass and enzymes did not respond to species mixture nor to the species richness in mixtures. However, the mixture effect on soil microbial biomass C:N changed from positive to negative, and those on soil enzyme C:N and C:P shifted from negative to positive with increasing functional diversity in mixtures. Importantly, species mixture increased the C:N, C:P, N:P ratios of plants and soils when background soil C:N, C:P, and N:P were low, but decreased them when the respective background ratios were high. Our results demonstrate that plant mixtures can balance terrestrial plant and soil C:N:P ratios dependent on background soil C:N:P. Our findings highlight that plant diversity conservation does not only increase plant productivity, but also optimizes ecosystem stoichiometry for the diversity and productivity of today's and future vegetation.


Asunto(s)
Carbono/análisis , Ecosistema , Nitrógeno/análisis , Fósforo/análisis , Plantas/química , Biodiversidad , Biomasa , Suelo/química , Microbiología del Suelo
4.
Sci Total Environ ; 654: 1023-1032, 2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30841376

RESUMEN

Revealing the dynamics of soil aggregate-associated microbial (particularly bacterial) metabolic activity and community structure is of great importance to maintain the soil health and microbial community stability in tea plantation ecosystems. In this study, the bacterial metabolic activity (as measured by Biolog Eco MicroPlates) and community structure (as measured by high-throughput sequencing) were analyzed in soil aggregates, which were collected at the 0-20 cm depth in four tea plantations with different ages (16, 23, 31, and 53 yrs.) in the areas of Western Sichuan, China. A dry-sieving procedure was adopted to separate soil aggregates into four fractions, including >2, 2-1, 1-0.25, and <0.25 mm. In all the tea plantations, the highest levels of soil bacterial metabolic activity (as indicated by average well color development, AWCD) and community diversity (as indicated by Chao 1 and Shannon indices) appeared in the >2 mm fractions, which indicated that these aggregate fractions with complex bacterial communities not only provided biological buffering, but also prevented the dominance of individual microorganisms through predation or competition. Soil aggregates with >2 mm were concentrated in the 23 yrs. tea plantation, implying that this tea plantation possessed the relatively suitable soil environments to the growth and proliferation of soil bacteria, thus increasing their metabolic activity and community diversity. After 23 yrs. of tea planting, the reduction of the >2 mm fractions in the whole-soil accounted for the degradation of soil bacterial communities to some extent. In the meanwhile, soil microbial quotient (the ratio of soil microbial biomass C to organic C) and pH were also important drivers of the variations in soil bacterial communities during tea planting. This study underscored the requirement for sustainable soil managements which could maintain the soil health and bacterial community stability after 23 yrs. of tea planting in the areas of Western Sichuan, China.


Asunto(s)
Camellia sinensis/crecimiento & desarrollo , Microbiología del Suelo , Bacterias , Biomasa , Camellia sinensis/microbiología , Monitoreo del Ambiente , Microbiota , Suelo/química ,
5.
New Phytol ; 221(2): 807-817, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30256426

RESUMEN

Plant stoichiometric coupling among all elements is fundamental to maintaining growth-related ecosystem functions. However, our understanding of nutrient balance in response to global changes remains greatly limited to plant carbon : nitrogen : phosphorus (C : N : P) coupling. Here we evaluated nine element stoichiometric variations with one meta-analysis of 112 global change experiments conducted across global terrestrial ecosystems and one synthesis over 1900 species observations along natural environment gradients across China. We found that experimentally increased soil N and P respectively enhanced plant N : potassium (K), N : calcium (Ca) and N : magnesium (Mg), and P : K, P : Ca and P : Mg, and natural increases in soil N and P resulted in qualitatively similar responses. The ratios of N and P to base cations decreased both under experimental warming and with naturally increasing temperature. With decreasing precipitation, these ratios increased in experiments but decreased under natural environments. Based on these results, we propose a new stoichiometric framework in which all plant element contents and their coupling are not only affected by soil nutrient availability, but also by plant nutrient demand to maintain diverse functions under climate change. This study offers new insights into understanding plant stoichiometric variations across a full set of mineral elements under global changes.


Asunto(s)
Elementos Químicos , Plantas/metabolismo , Dióxido de Carbono/metabolismo , Clima , Nitrógeno/análisis , Fósforo/análisis , Suelo
6.
PLoS One ; 13(8): e0201350, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30071040

RESUMEN

Phosphorus (P) is arguably more limiting than nitrogen for forest ecosystems being free of disturbances for lengthy time periods. The elucidation of multivariate relationships between foliar P and its primary drivers for dominant species is an urgent issue and formidable challenge for ecologists. Our goal was to evaluate the effects of primary drivers on foliar P of Quercus wutaishanica, the dominant species in broadleaved deciduous forest at the Loess Plateau, China. We sampled the leaves of 90 Q. wutaishanica individuals across broad climate and soil nutrient gradients at the Loess Plateau, China, and employed structural equation models (SEM) to evaluate multiple causal pathways and the relative importance of the drivers for foliar P per unit mass (Pmass) and per unit area (Parea). Our SEMs explained 73% and 81% of the variations in Pmass and Parea, respectively. Pmass was negatively correlated to leaf mass per area, positively correlated to leaf area, and increased with mean annual precipitation and total soil potassium. Parea was positively correlated to leaf mass per area, leaf dry weight, and increased significantly with total soil potassium. Our results demonstrated that leaf P content of Q. wutaishanica increased with total soil potassium in the Loess Plateau accordingly.


Asunto(s)
Modelos Biológicos , Fósforo/metabolismo , Hojas de la Planta/metabolismo , Potasio/metabolismo , Quercus/crecimiento & desarrollo , Suelo , Fósforo/química , Potasio/química
7.
Glob Chang Biol ; 24(3): 1308-1320, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29028280

RESUMEN

Controlled experiments have shown that global changes decouple the biogeochemical cycles of carbon (C), nitrogen (N), and phosphorus (P), resulting in shifting stoichiometry that lies at the core of ecosystem functioning. However, the response of soil stoichiometry to global changes in natural ecosystems with different soil depths, vegetation types, and climate gradients remains poorly understood. Based on 2,736 observations along soil profiles of 0-150 cm depth from 1955 to 2016, we evaluated the temporal changes in soil C-N-P stoichiometry across subtropical China, where soils are P-impoverished, with diverse vegetation, soil, and parent material types and a wide range of climate gradients. We found a significant overall increase in soil total C concentration and a decrease in soil total P concentration, resulting in increasing soil C:P and N:P ratios during the past 60 years across all soil depths. Although average soil N concentration did not change, soil C:N increased in topsoil while decreasing in deeper soil. The temporal trends in soil C-N-P stoichiometry differed among vegetation, soil, parent material types, and spatial climate variations, with significantly increased C:P and N:P ratios for evergreen broadleaf forest and highly weathered Ultisols, and more pronounced temporal changes in soil C:N, N:P, and C:P ratios at low elevations. Our sensitivity analysis suggests that the temporal changes in soil stoichiometry resulted from elevated N deposition, rising atmospheric CO2 concentration and regional warming. Our findings revealed that the responses of soil C-N-P and stoichiometry to long-term global changes have occurred across the whole soil depth in subtropical China and the magnitudes of the changes in soil stoichiometry are dependent on vegetation types, soil types, and spatial climate variations.


Asunto(s)
Carbono/química , Ecosistema , Nitrógeno/química , Fósforo/química , Suelo , China , Clima , Factores de Tiempo
8.
Glob Chang Biol ; 23(9): 3849-3856, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28407324

RESUMEN

Global change impacts on biogeochemical cycles have been widely studied, but our understanding of whether the responses of plant elemental composition to global change drivers differ between above- and belowground plant organs remains incomplete. We conducted a meta-analysis of 201 reports including 1,687 observations of studies that have analyzed simultaneously N and P concentrations changes in leaves and roots in the same plants in response to drought, elevated [CO2 ], and N and P fertilization around the world, and contrasted the results within those obtained with a general database (838 reports and 14,772 observations) that analyzed the changes in N and P concentrations in leaves and/or roots of plants submitted to the commented global change drivers. At global level, elevated [CO2 ] decreased N concentrations in leaves and roots and decreased N:P ratio in roots but no in leaves, but was not related to P concentration changes. However, the response differed among vegetation types. In temperate forests, elevated [CO2 ] was related with lower N concentrations in leaves but not in roots, whereas in crops, the contrary patterns were observed. Elevated [CO2 ] decreased N concentrations in leaves and roots in tundra plants, whereas not clear relationships were observed in temperate grasslands. However, when elevated [CO2 ] and N fertilization coincided, leaves had lower N concentrations, whereas root had higher N concentrations suggesting that more nutrients will be allocated to roots to improve uptake of the soil resources not directly provided by the global change drivers. N fertilization and drought increased foliar and root N concentrations while the effects on P concentrations were less clear. The changes in N and P allocation to leaves and root, especially those occurring in opposite direction between them have the capacity to differentially affect above- and belowground ecosystem functions, such as litter mineralization and above- and belowground food webs.


Asunto(s)
Dióxido de Carbono , Hojas de la Planta , Raíces de Plantas , Ecosistema , Cadena Alimentaria , Nitrógeno/metabolismo , Fósforo/metabolismo , Suelo
9.
Glob Chang Biol ; 23(3): 1282-1291, 2017 03.
Artículo en Inglés | MEDLINE | ID: mdl-27272953

RESUMEN

Plant invasion is an emerging driver of global change worldwide. We aimed to disentangle its impacts on plant-soil nutrient concentrations. We conducted a meta-analysis of 215 peer-reviewed articles and 1233 observations. Invasive plant species had globally higher N and P concentrations in photosynthetic tissues but not in foliar litter, in comparison with their native competitors. Invasive plants were also associated with higher soil C and N stocks and N, P, and K availabilities. The differences in N and P concentrations in photosynthetic tissues and in soil total C and N, soil N, P, and K availabilities between invasive and native species decreased when the environment was richer in nutrient resources. The results thus suggested higher nutrient resorption efficiencies in invasive than in native species in nutrient-poor environments. There were differences in soil total N concentrations but not in total P concentrations, indicating that the differences associated to invasive plants were related with biological processes, not with geochemical processes. The results suggest that invasiveness is not only a driver of changes in ecosystem species composition but that it is also associated with significant changes in plant-soil elemental composition and stoichiometry.


Asunto(s)
Especies Introducidas , Nitrógeno , Fósforo , Plantas , Ecosistema , Hojas de la Planta , Suelo
10.
Ecology ; 96(2): 373-80, 2015 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26240859

RESUMEN

Plants in infertile habitats are thought to have a high rate of nutrient resorption to enable them reuse nutrients more efficiently than those in fertile habitats. However, there is still much debate on how plant nutrient resorption responds to nutrient availability. Here we used a meta-analysis from a global data set of 9703 observations at 306 sites from 508 published articles to examine the effects of nitrogen (N) and phosphorus (P) fertilization on plant foliar N and P concentrations and resorption efficiency. We found that N fertilization enhanced N concentration in green leaves by 27% and P fertilization enhanced green-leaf P by 73% on average. The N and P concentrations in senesced leaves also increased with respective nutrient fertilization. Resorption efficiencies (percentage of nutrient recovered from senescing leaves) of both N and P declined in response to respective nutrient fertilization. Combined N and P fertilization also had negative effects on both N and P resorption efficiencies. Whether nutrient resorption efficiency differs among plant growth types and among ecosystems, however, remains uncertain due to the limited sample sizes when analyzed by plant growth types or ecosystem types. Our analysis indicates that fertilization decreases plant nutrient resorption and the view that nutrient resorption is a critical nutrient conservation strategy for plants in nutrient-poor environments cannot be abandoned. The response values to fertilization presented in our analysis can help improve biogeochemical models.


Asunto(s)
Fertilizantes , Nitrógeno/farmacología , Fósforo/farmacología , Desarrollo de la Planta/efectos de los fármacos , Plantas/efectos de los fármacos , Plantas/metabolismo , Ecosistema
11.
Proc Biol Sci ; 279(1743): 3796-802, 2012 Sep 22.
Artículo en Inglés | MEDLINE | ID: mdl-22764168

RESUMEN

Fine root production is the largest component of belowground production and plays substantial roles in the biogeochemical cycles of terrestrial ecosystems. The increasing availability of nitrogen (N) and phosphorus (P) due to human activities is expected to increase aboveground net primary production (ANNP), but the response of fine root production to N and P remains unclear. If roots respond to nutrients as ANNP, fine root production is anticipated to increase with increasing soil N and P. Here, by synthesizing data along the nutrient gradient from 410 natural habitats and from 469 N and/or P addition experiments, we showed that fine root production increased in terrestrial ecosystems with an average increase along the natural N gradient of up to 0.5 per cent with increasing soil N. Fine root production also increased with soil P in natural conditions, particularly at P < 300 mg kg(-1). With N, P and combined N + P addition, fine root production increased by a global average of 27, 21 and 40 per cent, respectively. However, its responses differed among ecosystems and soil types. The global average increases in fine root production are lower than those of ANNP, indicating that above- and belowground counterparts are coupled, but production allocation shifts more to aboveground with higher soil nutrients. Our results suggest that the increasing fertilizer use and combined N deposition at present and in the future will stimulate fine root production, together with ANPP, probably providing a significant influence on atmospheric CO(2) emissions.


Asunto(s)
Nitrógeno/farmacología , Fósforo/farmacología , Desarrollo de la Planta , Raíces de Plantas/crecimiento & desarrollo , Suelo/análisis , Ecosistema , Fertilizantes/análisis , Nitrógeno/análisis , Nitrógeno/metabolismo , Fósforo/análisis , Fósforo/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Plantas/efectos de los fármacos , Plantas/metabolismo
12.
Nat Commun ; 2: 344, 2011 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-21673665

RESUMEN

Most water and essential soil nutrient uptake is carried out by fine roots in plants. It is therefore important to understand the global geographic patterns of fine-root nitrogen and phosphorus cycling. Here, by compiling plant root data from 211 studies in 51 countries, we show that live fine roots have low nitrogen (N) and phosphorus (P), but similar N:P ratios when compared with green leaves. The fine-root N:P ratio differs between biomes and declines exponentially with latitude in roots of all diameter classes. This is in contrast to previous reports of a linear latitudinal decline in green leaf N:P, but consistent with nonlinear declines in leaf litter N:P. Whereas the latitudinal N:P decline in both roots and leaves reflects collective influences of climate, soil age and weathering, differences in the shape of the response function may be a result of their different N and P use strategies.


Asunto(s)
Geografía , Nitrógeno/análisis , Fósforo/análisis , Raíces de Plantas/química , Adaptación Biológica/fisiología , Clima , Biología Computacional , Hojas de la Planta/química , Análisis de Regresión
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA