Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Nat Commun ; 14(1): 6567, 2023 10 17.
Artículo en Inglés | MEDLINE | ID: mdl-37848496

RESUMEN

Human serum albumin (HSA) based drug delivery platforms that feature desirable biocompatibility and pharmacokinetic property are rapidly developed for tumor-targeted drug delivery. Even though various HSA-based platforms have been established, it is still of great significance to develop more efficient preparation technology to broaden the therapeutic applications of HSA-based nano-carriers. Here we report a bridging strategy that unfastens HSA to polypeptide chains and subsequently crosslinks these chains by a bridge-like molecule (BPY-Mal2) to afford the HSA reassemblies formulation (BPY@HSA) with enhanced loading capacity, endowing the BPY@HSA with uniformed size, high photothermal efficacy, and favorable therapeutic features. Both in vitro and in vivo studies demonstrate that the BPY@HSA presents higher delivery efficacy and more prominent photothermal therapeutic performance than that of the conventionally prepared formulation. The feasibility in preparation, stability, high photothermal conversion efficacy, and biocompatibility of BPY@HSA may facilitate it as an efficient photothermal agents (PTAs) for tumor photothermal therapy (PTT). This work provides a facile strategy to enhance the loading capacity of HSA-based crosslinking platforms in order to improve delivery efficacy and therapeutic effect.


Asunto(s)
Nanopartículas , Neoplasias , Humanos , Albúmina Sérica Humana/química , Terapia Fototérmica , Línea Celular Tumoral , Neoplasias/terapia , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Fototerapia
2.
Zhongguo Yi Liao Qi Xie Za Zhi ; 47(5): 562-565, 2023 Sep 30.
Artículo en Chino | MEDLINE | ID: mdl-37753898

RESUMEN

Traditional Chinese medicine fumigation device is the carrier of traditional Chinese medicine fumigation treatment. In recent years, with the rapid development of new technology and new materials, the development of fumigation device changes with each passing day, and a variety of new products continue to emerge. However, at present, the lack of corresponding evaluation norms, resulting in some difficulties in the registration, marketing, quality control, evaluation scale and other aspects of the product. Some products have many disadvantages in clinical use. From the perspective of technical review, this paper elaborates and analyzes the main concerns in technical review, such as product structure, main risks, performance requirements, clinical evaluation, etc., in order to provide a basis for the design, development, production, registration, use and post-marketing supervision of the devices.


Asunto(s)
Fumigación , Medicina Tradicional China , Mercadotecnía , Control de Calidad
3.
Int J Biol Macromol ; 244: 125064, 2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37245741

RESUMEN

To resolve poor accumulation caused by systemic administration, injectable and responsive hydrogels are the prospective drug delivery systems for localized tumor treatment, owning to negligible invasiveness and accurate administration. Herein, an injectable hydrogel, based on dopamine (DA) crosslinked hyaluronic acid and Bi2Se3 nanosheets (NSs) loading with doxorubicin (DOX) coated with polydopamine (Bi2Se3-DOX@PDA), was developed for synergistic chem-photothermal cancer therapy. The ultrathin functional Bi2Se3-DOX@PDA NSs could be responsive to the weak acidic condition and photothermal effect under NIR laser irradiation, achieving controlled release of DOX. Moreover, nanocomposite hydrogel based on hyaluronic acid matrix could be precisely administrated through intratumoral injection since its injectability and self-healing capacity, remaining at injected sites for at least 12 days. Furthermore, the excellent therapeutics effect of Bi2Se3-DOX@PDA nanocomposite hydrogel was demonstrated on 4 T1 xenograft tumor with outstanding injectability and negligible systemic side-effect. In short, the construction of Bi2Se3-DOX@PDA nanocomposite hydrogel paves a prospective path for local treatment of cancers.


Asunto(s)
Hidrogeles , Neoplasias , Humanos , Nanogeles , Ácido Hialurónico , Fototerapia , Doxorrubicina/farmacología , Doxorrubicina/uso terapéutico , Neoplasias/tratamiento farmacológico
4.
Nat Commun ; 14(1): 2943, 2023 05 23.
Artículo en Inglés | MEDLINE | ID: mdl-37221237

RESUMEN

Cancer immunotherapy is revolutionizing oncology. The marriage of nanotechnology and immunotherapy offers a great opportunity to amplify antitumor immune response in a safe and effective manner. Here, electrochemically active Shewanella oneidensis MR-1 can be applied to produce FDA-approved Prussian blue nanoparticles on a large-scale. We present a mitochondria-targeting nanoplatform, MiBaMc, which consists of Prussian blue decorated bacteria membrane fragments having further modifications with chlorin e6 and triphenylphosphine. We find that MiBaMc specifically targets mitochondria and induces amplified photo-damages and immunogenic cell death of tumor cells under light irradiation. The released tumor antigens subsequently promote the maturation of dendritic cells in tumor-draining lymph nodes, eliciting T cell-mediated immune response. In two tumor-bearing mouse models using female mice, MiBaMc triggered phototherapy synergizes with anti-PDL1 blocking antibody for enhanced tumor inhibition. Collectively, the present study demonstrates biological precipitation synthetic strategy of targeted nanoparticles holds great potential for the preparation of microbial membrane-based nanoplatforms to boost antitumor immunity.


Asunto(s)
Ferrocianuros , Inhibidores de Puntos de Control Inmunológico , Femenino , Animales , Ratones , Anticuerpos Bloqueadores , Inmunoterapia
5.
Small ; 18(26): e2201803, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35616079

RESUMEN

As a promising 2D nanocarrier, the biggest challenge of bare black phosphorus nanosheets (BP NSs) lies in the inherent instability, while it can be improved by surface modification strategies to a great extent. Considering the existing infirm BP NSs surface modification strategies, A mussels-inspired strong adhesive biomimetic peptide with azide groups for surface modification to increase the stability of BP NSs is synthesized. The azide groups on the peptide can quickly and precisely bind to the targeting ligand through click chemistry, solving the problem of nonspecificity of secondary modification of other mussel-mimicking materials. Besides, a catechol-Gd3+ coordination network is further constructed for magnetic resonance imaging (MRI) and inducing intracellular endo/lysosome escape. The fabricated BP-DOX@Gd/(DOPA)4 -PEG-TL nanoplatform exhibits enhanced antitumor abilities through synergetic chemo/photothermal effects both in vitro and in vivo.


Asunto(s)
Nanopartículas , Neoplasias , Azidas , Doxorrubicina/farmacología , Humanos , Ligandos , Imagen Multimodal , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Fósforo , Fototerapia/métodos
6.
Front Bioeng Biotechnol ; 10: 836468, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252143

RESUMEN

As reported, breast cancer is one of the most common malignancies in women and has overtaken lung cancer as the most commonly diagnosed cancer worldwide by 2020. Currently, phototherapy is a promising anti-tumor therapy due to its fewer side effects, less invasiveness, and lower cost. However, its application in cancer therapeutics is limited by the incomplete therapeutic effect caused by low drug penetration and monotherapy. Herein, we built a charge-reversal nanoplatform (Ce6-PLGA@PDA-PAH-DMMA NPs), including polydopamine (PDA) and chlorin e6 (Ce6) for enhancing photothermal/photodynamic synergistic therapy. The PAH-DMMA charge-reversal layer enabled Ce6-PLGA@PDA-PAH-DMMA NPs to have long blood circulation at the normal physiological environment and to successfully realize charge reversal under the weakly acidic tumor microenvironment, improving cellular uptake. Besides, in vitro tests demonstrated that Ce6-PLGA@PDA-PAH-DMMA NPs had high photothermal conversion and greater anti-tumor activity than no charge-reversal nanoparticles, which overcame the limited tumor therapeutic efficacy of PTT or photodynamic therapy alone. Overall, the design of pH-responsive and charge-reversal nanoparticles (Ce6-PLGA@PDA-PAH-DMMA NPs) provided a promising approach for synergistic PTT/PDT therapy against breast cancer.

7.
Polymers (Basel) ; 15(1)2022 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-36616565

RESUMEN

Lactoferrin (LF) is an iron-binding glycoprotein with various biological activities that has been extensively used in food and medical applications. Several methods for detecting LF have been reported, but they still face challenges in terms of sensitivity and simplicity of detection. To achieve an accurate and efficient detection of LF, we developed a method for the determination of LF in lactoferrin supplements using carbon dots (CDs) fluorescent probes. The N, S-doped PPI carbon dots (N, S-PPI-CDs) were prepared using a protein (peanut protein isolate) and cysteamine as precursors. The prepared N, S-PPI-CDs exhibited intense blue fluorescence and good biocompatibility, while the fluorescence intensity of the N, S-PPI-CDs showed a good linear relationship with Fe2+/Fe3+ concentration (0-2 µM). The N, S-PPI-CDs exhibited a high potential ability to rapidly detect Fe2+/Fe3+ within 30 s, with a limit of detection (LoD) of 0.21 µM/0.17 µM. Due to the reversible binding of LF to Fe, the N, S-PPI-CDs showed a high sensitivity and selectivity for LF, with a limit of detection (LoD) of 1.92 µg/mL. In addition, LF was quantified in real sample LF supplements and showed a fluctuation in recovery of less than 2.48%, further demonstrating the effectiveness of the fluorescent N, S-PPI-CDs sensor.

8.
J Control Release ; 338: 719-730, 2021 10 10.
Artículo en Inglés | MEDLINE | ID: mdl-34509586

RESUMEN

Given the difficulties of biodegradation of mesoporous silica nanoparticles (NPs), enrichment and penetration of tumor sites, and real-time monitoring of the treatment process, we developed a kind of mannose-doping doxorubicin-loading mesoporous silica nanoparticle (MSN-Man-DOX) and coated by polydopamine-Gd3+ (PDAGd) metal-phenolic networks, as well as modified by poly (2-Ethyl-2-Oxazoline) (PEOz), constructing a novel nanomedicine MSN-Man-DOX@PDA-Gd-PEOz. Its pH-responsive charge reversal, photothermal, biodegradation, drug release, and magnetic resonance imaging (MRI) properties were evaluated in vitro. Cellular uptake, tumor penetration, lysosomal escape properties, as well as cell safety and toxicity of the nanoplatform were investigated through cell experiments. Finally, the MRI, organ distribution, photothermal condition, and comprehensive anti-tumor therapy in vivo were evaluated comprehensively through animal experiments. Research results showed that MSN-Man-DOX@PDA-Gd-PEOz had outstanding tumor enrichment and penetration abilities, which can produce excellent treatment effects through the synergistic effect of chemotherapy and photothermal therapy (PTT) with the function of magnetic resonance imaging contrast agent for disease monitoring. Besides, after finishing the therapeutic effect MSN-Man-DOX@PDA-Gd-PEOz can be biodegraded, so it had a good prospect of clinical application.


Asunto(s)
Hipertermia Inducida , Nanopartículas , Animales , Doxorrubicina , Liberación de Fármacos , Humanos , Fototerapia , Dióxido de Silicio
9.
Nat Commun ; 10(1): 1675, 2019 04 11.
Artículo en Inglés | MEDLINE | ID: mdl-30975988

RESUMEN

Carboxylic acids are common moieties in medicines. They can be converted to phthalidyl esters as prodrugs. Unfortunately, phthalidyl esters are now mostly prepared in racemic forms. This is not desirable because the two enantiomers of phthalidyl esters likely have different pharmacological effects. Here we address the synthetic challenges in enantioselective modification of carboxylic acids via asymmetric acetalizations. The key reaction step involves asymmetric addition of a carboxylic acid to the catalyst-bound intermediate. This addition step enantioselectively constructs a chiral acetal unit that lead to optically enriched phthalidyl esters. A broad range of carboxylic acids react effectively under mild and transition metal-free conditions. Preliminary bioactivity studies show that the two enantiomers of chlorambucil phthalidyl esters exhibit different anti-cancer activities to inhibit the growth of Hela cells. Our catalytic strategy of asymmetric acetalizations of carboxylic acids shall benefit future development of chiral phthalidyl ester prodrugs and related molecules.


Asunto(s)
Acetales/química , Antineoplásicos/química , Ácidos Carboxílicos/química , Química Farmacéutica/métodos , Profármacos/química , Antineoplásicos/farmacología , Catálisis , Proliferación Celular/efectos de los fármacos , Descubrimiento de Drogas/métodos , Evaluación Preclínica de Medicamentos , Células HeLa , Humanos , Estructura Molecular , Ácidos Ftálicos/química , Profármacos/farmacología , Estereoisomerismo
10.
Angew Chem Int Ed Engl ; 58(23): 7641-7646, 2019 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-30980463

RESUMEN

The co-delivery of photosensitizers with prodrugs sensitive to reactive oxygen species (ROS) for light-triggered ROS generation and cascaded prodrug activation has drawn tremendous attention. However, the absence of a feasible method to deliver the two components at a precise ratio has impaired the application potential. Herein, we report an efficient method to produce a nanosized platform for the delivery of an optimized ratio of the two components by the means of host-guest strategy for maximizing the combination therapy efficacy of cancer treatment. The key features of this host-guest strategy for the combination therapy are that the ratio between photosensitizer and ROS-sensitive prodrug can be easily tuned, near-infrared (NIR) irradiation can sensitize the photosensitizer and activate the paclitaxel prodrug for its release, and the accumulation process can be tracked by NIR imaging to maximize the efficacy of photodynamic and chemotherapy.


Asunto(s)
Paclitaxel/farmacología , Fotoquimioterapia/métodos , Fármacos Fotosensibilizantes/administración & dosificación , Fototerapia/métodos , Profármacos/farmacología , Especies Reactivas de Oxígeno/metabolismo , Neoplasias del Cuello Uterino/terapia , Animales , Antineoplásicos Fitogénicos/farmacología , Proliferación Celular , Terapia Combinada , Sistemas de Liberación de Medicamentos , Femenino , Humanos , Rayos Infrarrojos , Ratones , Ratones Desnudos , Profármacos/química , Células Tumorales Cultivadas , Neoplasias del Cuello Uterino/patología , Ensayos Antitumor por Modelo de Xenoinjerto
11.
Biomaterials ; 163: 14-24, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29452945

RESUMEN

In this study, a reduction-sensitive supramolecular polymeric drug delivery system was developed for combinational photothermal-chemotherapy of cancer. The multifunctional system was self-assembled by specific host-guest interactions between hydrophilic ß-cyclodextrin functionalized hyaluronic acid and adamantane linked camptothecin/dye conjugate, where a near-infrared (NIR) absorbing dye IR825 was loaded. The hydrophilic hyaluronic acid shell endows the assembly with excellent colloidal stability and biocompatibility. The embedded disulfide bond in the camptothecin/dye conjugate was cleaved under reducing environment, leading to the release of the conjugated drug and the recovery of fluorescence emission. Meanwhile, the dye IR825 could efficiently transfer the absorbed light into local heat, making the nanoplatform an effective system for photothermal therapy. As evident by confocal microscopy images, the nanoplatform was quickly internalized by HeLa, MCF-7, and U14 cancer cells and released drug molecules inside the cells. In vitro cell viability assays confirmed that the cancer cells were efficiently killed by the treatment of the nanoplatform under NIR light irradiation. Significant tumor regression was also observed in the tumor-bearing mice upon the administration of the nanoplatform through combinational photothermal-chemotherapy therapy. Hence, this nanoplatform presented a great potential in site-specific combined photothermal-chemotherapy of tumor.


Asunto(s)
Antineoplásicos/química , Benzoatos/química , Colorantes Fluorescentes/química , Indoles/química , Nanopartículas/química , Polímeros/química , Profármacos/química , Adamantano/farmacología , Animales , Antineoplásicos/uso terapéutico , Camptotecina/química , Camptotecina/farmacología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Terapia Combinada , Portadores de Fármacos , Femenino , Humanos , Ácido Hialurónico/química , Interacciones Hidrofóbicas e Hidrofílicas , Rayos Infrarrojos , Ratones , Trasplante de Neoplasias , Oxidación-Reducción , Fototerapia/métodos , Profármacos/farmacología
12.
Small ; 13(29)2017 08.
Artículo en Inglés | MEDLINE | ID: mdl-28544287

RESUMEN

Inhomogeneous heating by photothermal therapy (PTT) during cancer treatment often results in the recurrence of tumors. Thus, integrating PTT with chemotherapy (CHT) may provide a complementary treatment for enhanced therapeutic efficiency. Herein, this study develops a hollow structured polymer-silica nanohybrid (HPSN) as a nanocarrier to simultaneously deliver the anticancer drug paclitaxel and photothermal agent palladium phthalocyanine to tumors through enhanced permeation and the retention effect. A combinational CHT/PTT therapy on mice bearing aggressive tumor grafts is conducted. The highly malignant tumor model, which recurs after sole treatment of PTT, can be eradicated by the combined CHT/PTT treatment. In addition, most of the off-targeted HPSN nanocarriers can be excreted through a hepatobiliary pathway in about 10 d. Serology results show that the fast-clearable HPSN can significantly reduce the side effect of the loaded paclitaxel drug. The present work provides an alternative approach for combinational cancer treatment with high therapeutic efficiency.


Asunto(s)
Antineoplásicos/química , Portadores de Fármacos/química , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Neoplasias/terapia , Fototerapia/métodos , Dióxido de Silicio/química , Animales , Terapia Combinada , Quimioterapia Combinada , Ratones , Paclitaxel/química , Paclitaxel/uso terapéutico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA