Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Prod Res ; : 1-4, 2024 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-38403948

RESUMEN

This study used network pharmacology and molecular docking techniques to investigate the molecular targets and pathways of Danggui Buxue Tang (DBT) in treating lung cancer. The compound-target network was constructed using the Traditional Chinese Medicine Systems Pharmacology Database (TCMSP), and a lung cancer-specific network was created using the GEO database and Cytoscape software. GO and KEGG pathway analyses were performed to understand the biological processes associated with DBT. The key compounds from Astragalus, kaempferol, and quercetin, and the potential targets are IL-6, IL-1ß, FOS, ICAM1, and CCL2. GO enrichment analysis revealed numerous biological process-related entries, while KEGG pathway analysis highlighted the TNF and IL-17 signalling pathways. Molecular docking confirmed the stable binding activity between the main active compounds of DBT and the target proteins. Overall, these findings shed light on the molecular mechanism of DBT in treating lung cancer, providing insights into targets, pathways, and biological processes involved.

2.
Artículo en Inglés | MEDLINE | ID: mdl-38330588

RESUMEN

Objective: To improve the understanding of aggressive NK-cell leukemia (ANKL) and summarize the progress of its diagnosis and treatment. Methods: We retrospectively analyzed a case of a patient who was initially diagnosed with T-cell lymphoma (non-specific type) and later transformed into ANKL through examinations such as bone marrow smear, flow cytometry, Q-mNGS, and pathology. We described the patient's diagnostic and treatment journey and conducted a literature review. Results: The patient presented with concomitant hemophagocytic syndrome upon admission. After treatment with the HLH-94 regimen, the patient developed tumor lysis syndrome, leading to a sudden onset of ventricular tachycardia and respiratory and cardiac arrest on the third day of admission. Despite aggressive resuscitation efforts, the patient did not survive. Conclusions: ANKL is rare in the world, and the disease is aggressive, so it is necessary to diagnose early and intervene timely. Bone marrow smear, flow cytometer and Q-mNGS are helpful to identify tumors quickly and determine the direction of diagnosis and treatment. This disease is often accompanied by hemophagocytic syndrome. When the pathogenesis is not clear, it is recommended to treat it with hormone and gamma globulin first, and after clarification, chemotherapy containing L-asparaginase may be added; pay attention to supportive treatment and vigilance against oncolysis. Allogeneic hematopoietic stem cell transplantation (allo-HSCT) can be performed as soon as possible, and the application of targeted drugs may further improve the curative effect. In a word, ANKL needs more data statistics and analysis to guide clinical diagnosis and treatment.

3.
Animals (Basel) ; 13(19)2023 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-37835698

RESUMEN

Maternal folic acid intake has important effects on offspring growth and development. The mechanism involved in the renewal of intestinal epithelial cells remains unclear. Thus, this study aimed to investigate the potential effect of maternal folic acid supplementation during gestation and lactation on the structural and functional development of the small intestine in piglet offspring. Twenty-four Duroc sows were assigned to a control group (CON) and a folic-acid-supplemented group (CON + FA, supplemented with 15 mg/kg of folic acid). The results showed that maternal folic acid supplementation throughout gestation and lactation significantly increased the body weight, serum folate level, and intestinal folate metabolism in piglets. It also improved the villus length, villus height-to-crypt depth ratio, and transcript levels of nutrient transporters (GLUT4, SNAT2, FABP2, and SLC7A5) in piglets' duodenum and jejunum. In addition, maternal folic acid supplementation increased Ki67-positive cells and the expression of proliferation-related marker genes (C-Myc, CyclinD1, and PCNA) in piglets' intestinal stem cells. It also boosted the expression of genes associated with mature secreted cells (ChrA, Muc2, Lyz, Vil1), indicating enhanced proliferation and differentiation of intestinal stem cells. These findings demonstrate that maternal folic acid supplementation enhances growth performance and gut health in piglet offspring by promoting epithelial cell renewal equilibrium.

4.
Chem Biodivers ; 20(12): e202301454, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37874779

RESUMEN

Phytochemical investigation on the anti-inflammatory fraction extracted from the whole plant of Euphorbia helioscopia L. led to the isolation of three new ent-atisane diterpenoids (1-3) and five known analogues (4-8). The structures and absolute configurations of the new compounds were elucidated by comprehensive analysis of the NMR, MS, IR, ECD, and X-ray crystallography. It is worth mentioning that compound 3 belongs to a rare class of ent-atisane diterpenoid featuring a hydroxyl group at C-9. Bioactivity investigation showed that compounds 4, 7, and 8 exhibited significant inhibitory effects on LPS-induced NO production in a dose-dependent manner, which indicates their anti-inflammatory potential.


Asunto(s)
Diterpenos , Euphorbia , Euphorbia/química , Diterpenos/farmacología , Diterpenos/química , Espectroscopía de Resonancia Magnética , Antiinflamatorios/farmacología , Antiinflamatorios/química , Extractos Vegetales/farmacología , Extractos Vegetales/química , Estructura Molecular
5.
Cells ; 12(11)2023 06 04.
Artículo en Inglés | MEDLINE | ID: mdl-37296662

RESUMEN

In plants, the timely degeneration of tapetal cells is essential for providing nutrients and other substances to support pollen development. Rapid alkalinization factors (RALFs) are small, cysteine-rich peptides known to be involved in various aspects of plant development and growth, as well as defense against biotic and abiotic stresses. However, the functions of most of them remain unknown, while no RALF has been reported to involve tapetum degeneration. In this study, we demonstrated that a novel cysteine-rich peptide, EaF82, isolated from shy-flowering 'Golden Pothos' (Epipremnum aureum) plants, is a RALF-like peptide and displays alkalinizing activity. Its heterologous expression in Arabidopsis delayed tapetum degeneration and reduced pollen production and seed yields. RNAseq, RT-qPCR, and biochemical analyses showed that overexpression of EaF82 downregulated a group of genes involved in pH changes, cell wall modifications, tapetum degeneration, and pollen maturation, as well as seven endogenous Arabidopsis RALF genes, and decreased proteasome activity and ATP levels. Yeast two-hybrid screening identified AKIN10, a subunit of energy-sensing SnRK1 kinase, as its interacting partner. Our study reveals a possible regulatory role for RALF peptide in tapetum degeneration and suggests that EaF82 action may be mediated through AKIN10 leading to the alteration of transcriptome and energy metabolism, thereby causing ATP deficiency and impairing pollen development.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Cisteína/metabolismo , Flores , Polen/genética , Péptidos/metabolismo , Adenosina Trifosfato/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo
6.
Aquat Toxicol ; 258: 106508, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37001197

RESUMEN

Carbon quantum dots (CQDs) have received increasing attention in recent years for their potential toxicity. However, little is known about their neurobehavioral toxicity. This study aimed to investigate the potential mechanisms by which probiotics reduce CQDs neurotoxicity from a brain-gut axis perspective by exposing carp to CQDs and/or probiotics for five weeks. The results showed that CQDs accumulation in the brain reduces the expression of blood-brain-barrier (BBB) related genes in carp, leading to brain damage. In addition, CQDs impaired motor behavior and inhibited acetylcholinesterase activity. These abnormalities were alleviated by probiotic supplementation. Microbiomic analysis showed that probiotics improved the imbalance of intestinal flora caused by CQDs and increased the abundance of Firmicutes. Serum metabolomic analysis showed that probiotic supplementation restored the abnormal metabolic levels associated with neurological, inflammatory, and apoptotic cell death caused by CQDs. Overall, probiotic supplementation improved the CQDs-induced changes in brain damage, gut microbiology, and systemic metabolism. These results suggests that CQDs may cause neurotoxicity via the brain-gut microbial axis.


Asunto(s)
Carpas , Probióticos , Puntos Cuánticos , Contaminantes Químicos del Agua , Animales , Carbono , Acetilcolinesterasa , Contaminantes Químicos del Agua/toxicidad
7.
Front Plant Sci ; 13: 957735, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36420041

RESUMEN

Nitric oxide (NO) has received much attention since it can boost plant defense mechanisms, and plenty of studies have shown that exogenous NO improves salinity tolerance in plants. However, because of the wide range of experimental settings, it is difficult to assess the administration of optimal dosages, frequency, timing, and method of application and the overall favorable effects of NO on growth and yield improvements. Therefore, we conducted a meta-analysis to reveal the exact physiological and biochemical mechanisms and to understand the influence of plant-related or method-related factors on NO-mediated salt tolerance. Exogenous application of NO significantly influenced biomass accumulation, growth, and yield irrespective of salinity stress. According to this analysis, seed priming and foliar pre-treatment were the most effective methods of NO application to plants. Moreover, one-time and regular intervals of NO treatment were more beneficial for plant growth. The optimum concentration of NO ranges from 0.1 to 0.2 mM, and it alleviates salinity stress up to 150 mM NaCl. Furthermore, the beneficial effect of NO treatment was more pronounced as salinity stress was prolonged (>21 days). This meta-analysis showed that NO supplementation was significantly applicable at germination and seedling stages. Interestingly, exogenous NO treatment boosted plant growth most efficiently in dicots. This meta-analysis showed that exogenous NO alleviates salt-induced oxidative damage and improves plant growth and yield potential by regulating osmotic balance, mineral homeostasis, photosynthetic machinery, the metabolism of reactive oxygen species, and the antioxidant defense mechanism. Our analysis pointed out several research gaps, such as lipid metabolism regulation, reproductive stage performance, C4 plant responses, field-level yield impact, and economic profitability of farmers in response to exogenous NO, which need to be evaluated in the subsequent investigation.

8.
Toxins (Basel) ; 14(5)2022 05 13.
Artículo en Inglés | MEDLINE | ID: mdl-35622585

RESUMEN

Botanical pesticides have received increasing attention for sustainable control of insect pests. Plants from the genus Tephrosia are known to produce rotenone and deguelin. Rotenone is known to possess insecticidal activities against a wide range of pests, but deguelin's activities remain largely inconclusive. On the other hand, the biosynthesis of rotenone and deguelin may vary in Tephrosia species. This study analyzed the rotenone and deguelin contents in 13 strains across 4 Tephrosia species over 4 growing seasons using HPLC. Our study shows that the species and even the strains within a species vary substantially in the biosynthesis of rotenone and deguelin, and their contents can be affected by the growing season. After identification of the LC50 values of chemical rotenone and deguelin against Aphis gossypii (Glover) and Bemisia tabaci (Gennadius), leaf extracts derived from the 13 strains were used to test their insecticidal activities against the 2 pests. The results showed that the extracts derived from 2 strains of T. vogelii had the highest insecticidal activity, resulting in 100% mortality of A. gossypii and greater than 90% mortality of B. tabaci. The higher mortalities were closely associated with the higher contents of rotenone and deguelin in the two strains, indicating that deguelin also possesses insecticidal activities. This is the first documentation of leaf extracts derived from 13 Tephrosia strains against 2 important pests of A. gossypii and B. tabaci. The strain variation and seasonal influence on the rotenone and deguelin contents call for careful attention in selecting appropriate strains and seasons to produce leaf extracts for the control of insect pests.


Asunto(s)
Áfidos , Insecticidas , Tephrosia , Animales , Insecticidas/toxicidad , Extractos Vegetales/farmacología , Rotenona/análogos & derivados , Rotenona/química , Rotenona/toxicidad , Tephrosia/química
9.
Mol Immunol ; 146: 78-86, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35462079

RESUMEN

Asthma is a chronic inflammatory disease of the respiratory system. Maresin-2 (MaR2) is biosynthesized from docosahexaenoic acid (DHA) by macrophages, display strong anti-inflammatory and pro-resolving activity. To investigate the therapeutic effect and mechanism of MaR2 on asthmatic mice induced by ovalbumin (OVA) in conjunction with the adjuvant aluminum hydroxide. Twenty four female BALB/c mice were randomly divided into control, OVA, OVA + MaR2, and OVA + dexamethasone (Dexa) groups. MaR2 or Dexa were given as a treatment for OVA-induced asthma. Serum, bronchoalveolar alveolar lavage fluid (BALF) and lung tissue were collected for further analysis. The Pathological changes of lung tissue, proportion of inflammatory cells in BALF, levels of inflammatory cytokines in BALF or serum, oxidative stress indices, and the protein concentration of ASC, MPO, Ly-6G, ICAM-1, NLRP3 and Caspase-1 in lung tissues were evaluated. Compared with the OVA group, both OVA + MaR2 and OVA + Dexa group had reduced inflammation and mucus secretion in lung tissue, number of inflammatory cells in BALF, levels of related inflammatory cytokines in serum or BALF, and expressions of ASC, MPO, Ly-6G, ICAM-1, NLRP3 and Caspase-1 proteins in lung tissue. In addition, the oxidative stress was alleviated as indicated by decreased MDA, and elevated SOD and GSH. MaR2 has an obvious protective effect on OVA-induced bronchial asthma in mice, in a similar manner as Dexa. The mechanism may be related to the inhibition of the Th2 type immune response, the NLRP3 inflammasome activation and oxidative stress.


Asunto(s)
Asma , Inflamasomas , Animales , Líquido del Lavado Bronquioalveolar , Caspasas/metabolismo , Citocinas/metabolismo , Modelos Animales de Enfermedad , Ácidos Docosahexaenoicos/metabolismo , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/uso terapéutico , Femenino , Inmunidad , Inflamasomas/metabolismo , Inflamación/metabolismo , Molécula 1 de Adhesión Intercelular/metabolismo , Pulmón , Ratones , Ratones Endogámicos BALB C , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Ovalbúmina , Estrés Oxidativo
10.
Front Plant Sci ; 12: 707061, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34497622

RESUMEN

Alpinia zerumbet (Zingiberaceae) is a unique ornamental and medicinal plant primarily used in food ingredients and traditional medicine. While organic amendments such as biochar (BC) and compost (Co) have been demonstrated to improve plant productivity, no studies have examined their effects on the growth, physiology, and secondary metabolites of A. zerumbet. This study evaluated the impact of the amendment of BC, Co, or a biochar and compost mixture (BC+Co) on modifying and improving the growth, photosynthesis, antioxidant status, and secondary metabolism of A. zerumbet grown on sandy loam soil. The morpho-physiological and biochemical investigation revealed variation in the response of A. zerumbet to organic amendments. The amendment of BC and BC+Co significantly increased net photosynthetic rates of plants by more than 28%, chlorophyll a and b contents by 92 and 78%, respectively, and carboxylation efficiency by 50% compared with those grown in the sandy loam soil without amendment. Furthermore, the amendment significantly decreased plant oxidative stress, measured as leaf free proline and glycine betaine. Enzymatic antioxidant activity, total phenols, and flavonoids also varied in their response to the organic amendments. In conclusion, this study shows that BC and/or Co amendments are an efficient and sustainable method for improving the metabolite contents and reducing oxidative stress in A. zerumbet.

11.
J Biophotonics ; 14(11): e202100117, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34331509

RESUMEN

Photothermal therapy (PTT) has attracted wide attention due to its noninvasiveness and its thermal ablation ability. As photothermal agents are crucial factor in PTT, those with the characteristics of biocompatibility, non-toxicity and high photothermal stability have attracted great interest. In this work, new indocyanine green (IR-820) was utilized as a photothermal agent and near-infrared (NIR) fluorescence imaging nanoprobe. To improve the biocompatibility, poly(styrene-co-maleic anhydride) (PSMA) was utilized to encapsulate the IR-820 molecules to form novel IR-820@PSMA nanoparticles (NPs). Then, the optical and thermal properties of IR-820@PSMA NPs were studied in detail. The IR-820@PSMA NPs showed excellent photothermal stability and biocompatibility. The cellular uptaking ability of the IR-820@PSMA NPs was further confirmed in HeLa cells by the NIR fluorescent confocal microscopic imaging technique. The IR-820@PSMA NPs assisted PTT of living HeLa cells was conducted under 793 nm laser excitation, and a high PTT efficiency of 73.3% was obtained.


Asunto(s)
Nanopartículas , Neoplasias del Cuello Uterino , Femenino , Células HeLa , Humanos , Verde de Indocianina/análogos & derivados , Fototerapia , Terapia Fototérmica , Polímeros , Neoplasias del Cuello Uterino/diagnóstico por imagen , Neoplasias del Cuello Uterino/terapia
12.
J Nat Prod ; 84(8): 2111-2120, 2021 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-34197108

RESUMEN

A bioactivity-guided study on the leaves of Picrasma javanica led to the isolation of 19 quassinoids, including 13 new compounds. The structures of the new compounds were elucidated by a combination of spectroscopic data analysis, X-ray crystallography studies, and electronic circular dichroism (ECD) data interpretation. Compounds 1-7 are rare examples of quassinoids with a keto carbonyl group at C-12. The biological activities of 11 of the more abundant isolates were evaluated against five phytopathogenic fungi in vitro, and several of them including 6 and 15 showed moderate inhibitory effects that were comparative to those of the positive control, carbendazim. In addition, the preliminary structure-activity relationships (SARs) of these quassinoids were also investigated.


Asunto(s)
Hongos/efectos de los fármacos , Fungicidas Industriales/farmacología , Picrasma/química , Cuassinas/farmacología , China , Hongos/patogenicidad , Fungicidas Industriales/química , Estructura Molecular , Fitoquímicos/química , Fitoquímicos/farmacología , Picrasma/microbiología , Extractos Vegetales/química , Hojas de la Planta/química , Cuassinas/química , Relación Estructura-Actividad
13.
Toxins (Basel) ; 12(11)2020 11 21.
Artículo en Inglés | MEDLINE | ID: mdl-33233472

RESUMEN

Autumn crocus (Colchicum autumnale L.) is a medicinal plant as it contains high concentrations of colchicine. In this study, we reported that the ground powder of autumn crocus bulb is highly toxic to invasive Solenopsis invicta Buren, commonly referred to as red imported fire ants (RIFAs). Ants fed with sugar water containing 5000 mg/L of bulb powder showed 54.67% mortality in three days compared to 45.33% mortality when fed with sugar water containing 50 mg/L of colchicine. Additionally, the effects of short-term feeding with sugar water containing 1 mg/L of colchicine and 100 mg/L of autumn crocus bulb powder were evaluated for RIFAs' colony weight, food consumption, and aggressiveness, i.e., aggregation, grasping ability, and walking speed. After 15 days of feeding, the cumulative colony weight loss reached 44.63% and 58.73% due to the sublethal concentrations of colchicine and autumn crocus bulb powder, respectively. The consumption of sugar water and mealworm (Tenebrio molitor L.) was substantially reduced. The aggregation rates decreased 48.67% and 34.67%, grasping rates were reduced to 38.67% and 16.67%, and walking speed decreased 1.13 cm/s and 0.67 cm/s as a result of the feeding of the two sublethal concentrations of colchicine and autumn crocus bulb powder, respectively. Our results for the first time show that powder derived from autumn crocus bulbs could potentially be a botanical pesticide for controlling RIFAs, and application of such a product could be ecologically benign due to its rapid biodegradation in the environment.


Asunto(s)
Hormigas/efectos de los fármacos , Colchicina/toxicidad , Colchicum , Insecticidas/toxicidad , Preparaciones de Plantas/toxicidad , Raíces de Plantas , Agresión/efectos de los fármacos , Animales , Hormigas/crecimiento & desarrollo , Ingestión de Alimentos/efectos de los fármacos , Polvos
14.
Chemosphere ; 252: 126539, 2020 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-32220719

RESUMEN

Biochar is a promising agent for wastewater treatment, soil remediation, and gas storage and separation. This review summarizes recent research development on biochar production and applications with a focus on the application of biochar technology in wastewater treatment. Different technologies for biochar production, with an emphasis on pre-treatment of feedstock and post treatment, are succinctly summarized. Biochar has been extensively used as an adsorbent to remove toxic metals, organic pollutants, and nutrients from wastewater. Compared to pristine biochar, engineered/designer biochar generally has larger surface area, stronger adsorption capacity, or more abundant surface functional groups (SFG), which represents a new type of carbon material with great application prospects in various wastewater treatments. As the first of its kind, this critical review emphasizes the promising prospects of biochar technology in the treatment of various wastewater including industrial wastewater (dye, battery manufacture, and dairy wastewater), municipal wastewater, agricultural wastewater, and stormwater. Future research on engineered/designer biochar production and its field-scale application is discussed. Based on the review, it can be concluded that biochar technology represents a new, cost effective, and environmentally-friendly solution for the treatment of wastewater.


Asunto(s)
Carbón Orgánico , Eliminación de Residuos Líquidos/métodos , Adsorción , Agricultura , Contaminantes Ambientales , Suelo , Aguas Residuales
15.
Med Sci Monit ; 25: 6128-6152, 2019 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-31418429

RESUMEN

BACKGROUND Gestational diabetes mellitus (GDM) is a pregnancy complication that is diagnosed by the novel onset of abnormal glucose intolerance. Our study aimed to investigate the changes in human breast milk metabolome over the first month of lactation and how GDM affects milk metabolome. MATERIAL AND METHODS Colostrum, transition milk, and mature milk samples from women with normal uncomplicated pregnancies (n=94) and women with GDM-complicated pregnancies (n=90) were subjected to metabolomic profiling by the use of gas chromatography-mass spectrometry (GC-MS). RESULTS For the uncomplicated pregnancies, there were 59 metabolites that significantly differed among colostrum, transition milk, and mature milk samples, while 58 metabolites differed in colostrum, transition milk, and mature milk samples from the GDM pregnancies. There were 28 metabolites that were found to be significantly different between women with normal pregnancies and women with GDM pregnancies among colostrum, transition milk, and mature milk samples. CONCLUSIONS The metabolic profile of human milk is dynamic throughout the first months of lactation. High levels of amino acids in colostrum and high levels of saturated fatty acids and unsaturated fatty acids in mature milk, which may be critical for neonatal development in the first month of life, were features of both normal and GDM pregnancies.


Asunto(s)
Calostro/química , Diabetes Gestacional/metabolismo , Leche Humana/química , Adulto , Aminoácidos/metabolismo , Índice de Masa Corporal , Lactancia Materna , China , Calostro/metabolismo , Ácidos Grasos/metabolismo , Ácidos Grasos Insaturados/metabolismo , Femenino , Cromatografía de Gases y Espectrometría de Masas/métodos , Humanos , Lactancia/metabolismo , Lactancia/fisiología , Metaboloma/fisiología , Metabolómica , Leche Humana/metabolismo , Periodo Posparto/metabolismo , Embarazo
16.
Nat Prod Res ; 32(16): 1967-1970, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28768425

RESUMEN

Vibrio spp. are pathogens of many bacterial diseases which have caused great economic losses in marine aquaculture. The strategy of alternative medical treatment that is utilised by herbalists has expanded in the past decade. The aim of our study is to discover the antibacterial molecules against Vibrio spp. Bacterial growth inhibition, membrane permeabilisation assessment and DNA interaction assays, as well as agarose gel electrophoresis, were employed to elucidate the antibacterial activity of hydroxytyrosol acetate. Results showed that hydroxytyrosol acetate had antibacterial activity against Vibrio spp. and it played the role via increasing bacterial membrane permeabilisation. The DNA interaction assay and agarose gel electrophoresis revealed that hydroxytyrosol acetate interacted with DNA. Hydroxytyrosol acetate enhanced the fluorescent intensity of DNA binding molecules and mediated supercoiled DNA relaxation. The present study provides more evidence that hydroxytyrosol acetate is a novel antibacterial candidate against Vibrio spp.


Asunto(s)
Acetatos/aislamiento & purificación , Antibacterianos/aislamiento & purificación , Catecoles/aislamiento & purificación , Olea/química , Extractos Vegetales/farmacología , Acetatos/química , Acetatos/metabolismo , Acetatos/farmacología , Antibacterianos/metabolismo , Antibacterianos/farmacología , Catecoles/metabolismo , Catecoles/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , ADN Bacteriano/metabolismo , Alcohol Feniletílico/análogos & derivados , Extractos Vegetales/química , Vibrio/efectos de los fármacos , Vibrio/ultraestructura
17.
Molecules ; 22(4)2017 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-28353656

RESUMEN

Fresh jasmine flowers have been used to make jasmine teas in China, but there has been no complete information about volatile organic compound emissions in relation to flower developmental stages and no science-based knowledge about which floral stage should be used for the infusion. This study monitored volatile organic compounds emitted from living flowers of Jasminum sambac (L.) Ait. 'Bifoliatum' at five developmental stages and also from excised flowers. Among the compounds identified, α-farnesene, linalool, and benzyl acetate were most abundant. Since α-farnesene is synthesized through the Mevalonate pathway, four genes encoding 3-hydroxy-3-methylglutaryl coenzyme A synthase, 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR), farnesyl pyrophosphate synthase, and terpene synthase were isolated. Their expression patterns in living flowers at the five stages and in excised flowers coincided with the emission patterns of α-farnesene. Application of lovastatin, a HMGR inhibitor, significantly reduced the expression of the genes and greatly decreased the emission of α-farnesene. The sweet scent was diminished from lovastatin-treated flowers as well. These results indicate that α-farnesene is an important compound emitted from jasmine flowers, and its emission patterns suggest that flowers at the opening stage or flower buds 8 h after excision should be used for the infusion of tea leaves.


Asunto(s)
Flores/crecimiento & desarrollo , Jasminum/química , Proteínas de Plantas/metabolismo , Sesquiterpenos/metabolismo , Compuestos Orgánicos Volátiles/análisis , Flores/química , Regulación del Desarrollo de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Jasminum/enzimología , Lovastatina/farmacología , Redes y Vías Metabólicas/efectos de los fármacos , Aceites de Plantas/análisis
18.
J Agric Food Chem ; 65(7): 1320-1327, 2017 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-28135082

RESUMEN

Elymus natans, a perennial gramineous grass, plays an important role in animal husbandry and environmental sustenance in the Qinghai-Tibet plateau as a result of its high forage quality and good adaptability to the local environment. A bioassay showed that the extracts of green grasses of E. natans (GG) exhibited stronger phytotoxic activities than withered grasses (WG) against crops and grasses. In view of the secondary metabolites, which may be responsible for the resistance of the plant, the chemical components of GG were investigated. The flavone tricin, E1, and 10 flavonolignans, E2-E11, including three new flavonolignans, E2, E10, and E11, were isolated and identified. As far as we know, this is the first report on the chemical constitutions of the plant until now. The contents of compounds E1 and E4-E7 in GG were significantly higher than those in WG in high-performance liquid chromatography analysis, and they also showed observably phytotoxic activities against lettuce and Festuca arundinacea.


Asunto(s)
Elymus/química , Flavonolignanos/toxicidad , Extractos Vegetales/toxicidad , Animales , Elymus/toxicidad , Festuca/efectos de los fármacos , Flavonolignanos/análisis , Flavonolignanos/aislamiento & purificación , Lactuca/efectos de los fármacos , Extractos Vegetales/análisis , Extractos Vegetales/aislamiento & purificación , Poaceae/efectos de los fármacos
19.
PLoS One ; 11(10): e0164129, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27711241

RESUMEN

BACKGROUND: Habitat fragmentation, water resources and biological characteristics are important factors that shape the genetic structure and geographical distribution of desert plants. Analysis of the relationships between these factors and population genetic variation should help to determine the evolutionary potential and conservation strategies for genetic resources for desert plant populations. As a traditional Chinese herb, Glycyrrhiza inflata B. (Fabaceae) is restricted to the fragmented desert habitat in China and has undergone a dramatic decline due to long-term over-excavation. Determining the genetic structure of the G. inflata population and identifying a core collection could help with the development of strategies to conserve this species. RESULTS: We investigated the genetic variation of 25 G. inflata populations based on microsatellite markers. A high level of population genetic divergence (FST = 0.257), population bottlenecks, reduced gene flow and moderate genetic variation (HE = 0.383) were detected. The genetic distances between the populations significantly correlated with the geographical distances, and this suggests that habitat fragmentation has driven a special genetic structure of G. inflata in China through isolation by distance. STRUCTURE analysis showed that G. inflata populations were structured into three clusters and that the populations belonged to multiple water systems, which suggests that water resources were related to the genetic structure of G. inflata. In addition, the biological characteristics of the perennial species G. inflata, such as its long-lived seeds, asexual reproduction, and oasis ecology, may be related to its resistance to habitat fragmentation. A core collection of G. inflata, that included 57 accessions was further identified, which captured the main allelic diversity of G. inflata. CONCLUSIONS: Recent habitat fragmentation has accelerated genetic divergence. The population genetic structure of G. inflata has been shaped by habitat fragmentation, water resources and biological characteristics. This genetic information and core collection will facilitate the conservation of wild germplasm and breeding of this Chinese medicinal plant.


Asunto(s)
Ecosistema , Fabaceae/genética , Variación Genética , Recursos Hídricos/provisión & distribución , Fabaceae/metabolismo , Flujo Génico
20.
Front Plant Sci ; 7: 1089, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27493658

RESUMEN

Flavonols as plant secondary metabolites with vital roles in plant development and defense against UV light, have been demonstrated to be the main bioactive components (BCs) in the genus Epimedium plants, several species of which are used as materials for Herba Epimedii, an important traditional Chinese medicine. The flavonol biosynthetic pathway genes had been already isolated from Epimedium sagittatum, but a R2R3-MYB transcription factor regulating the flavonol synthesis has not been functionally characterized so far in Epimedium plants. In this study, we isolated and characterized the R2R3-MYB transcription factor EsMYBF1 involved in regulation of the flavonol biosynthetic pathway from E. sagittatum. Sequence analysis indicated that EsMYBF1 belongs to the subgroup 7 of R2R3-MYB family which contains the flavonol-specific MYB regulators identified to date. Transient reporter assay showed that EsMYBF1 strongly activated the promoters of EsF3H (flavanone 3-hydroxylase) and EsFLS (flavonol synthase), but not the promoters of EsDFRs (dihydroflavonol 4-reductase) and EsANS (anthocyanidin synthase) in transiently transformed Nicotiana benthamiana leaves. Both yeast two-hybrid assay and transient reporter assay validated EsMYBF1 to be independent of EsTT8, or AtTT8 bHLH regulators of the flavonoid pathway as cofactors. Ectopic expression of EsMYBF1 in transgenic tobacco resulted in the increased flavonol content and the decreased anthocyanin content in flowers. Correspondingly, the structural genes involved in flavonol synthesis were upregulated in the EsMYBF1 overexpression lines, including NtCHS (chalcone synthase), NtCHI (chalcone isomerase), NtF3H and NtFLS, whereas the late biosynthetic genes of the anthocyanin pathway (NtDFR and NtANS) were remarkably downregulated, compared to the controls. These results suggest that EsMYBF1 is a flavonol-specific R2R3-MYB regulator, and involved in regulation of the biosynthesis of the flavonol-derived BCs in E. sagittatum. Thus, identification and functional characterization of EsMYBF1 provide insight into understanding the biosynthesis and regulation of the flavonol-derived BCs in Epimedium plants, and also provide an effective tool gene for genetic manipulation to improve the flavonol synthesis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA