RESUMEN
Introduction: Traditional Chinese medicine compound preparations have become an increasingly utilized strategy for tumour treatment. Qidongning Formula (QDN) is a kind of antitumour compound preparation used in hospitals, and it can inhibit the growth of lung cancer cells. However, due to the complexity of botanical drugs, the quality evaluation of QDN is inconsistent, affecting clinical efficacy and posing potential safety risks for clinical application. Additionally, tissue distribution is an integral part of the drug development process. Methods: To study the distribution characteristics of markers in compound preparations and rat tissues, a novel HPLC-QQQ-MS/MS quantitative analytical method was established to determine five markers in QDN simultaneously, and the method was verified. Results and discussion: The analytical results showed that the contents of salidroside (51.6 ± 5.75 µg/g), calycosin-7-O-ß-D-glucoside (94.2 ± 15.4 µg/g), specnuezhenide (371 ± 72.5 µg/g), formononetin (23.8 ± 5.39 µg/g), and polyphyllin I (87.7 ± 10.6 µg/g) were stable in different batches of QDN. After intragastric administration (13.5 g/kg) in rats for 1 h, four markers in the QDN, except polyphyllin I, were distributed in most tissues. QDN was distributed chiefly in the stomach and small intestine, followed by the liver or kidney. The study also found that specnuezhenide had the highest concentration in both QDN and rat tissues (102 ± 22.1 µg/g in the stomach), while formononetin had the highest transfer rate (0.351%) from QDN to rat intestines. The above research lays a quality research foundation for the antitumour application of QDN and provides a scientific reference for the quality control of Chinese medicine compound preparations.
RESUMEN
Vitiligo is an autoimmune disease that leads to disfiguring depigmented lesions of skin and mucosa. Although effective treatments are available for vitiligo, there are still some patients with poor responses to conventional treatment. Refractory vitiligo lesions are mostly located on exposed sites such as acral sites and lips, leading to significant life stress. Understanding the causes of refractory vitiligo and developing targeted treatments are essential to enhance vitiligo outcomes. In this review, we summarized recent treatment approaches and some potential methods for refractory vitiligo. Janus kinase inhibitors have shown efficacy in refractory vitiligo. A variety of surgical interventions and fractional carbon dioxide laser have been widely applied to combination therapies. Furthermore, melanocyte regeneration and activation therapies are potentially effective strategies. Patients with refractory vitiligo should be referred to psychological monitoring and interventions to reduce the potential pathogenic effects of chronic stress. Finally, methods for depigmentation and camouflage may be beneficial in achieving uniform skin color and improved quality of life. Our ultimate focus is to provide alternative options for refractory vitiligo and to bring inspiration to future research.
Asunto(s)
Vitíligo , Humanos , Vitíligo/terapia , Calidad de Vida , Resultado del Tratamiento , Terapia Combinada , Melanocitos/fisiologíaRESUMEN
PURPOSE: Acral melanoma is the major subtype of melanoma seen in Asian patients with melanoma and is featured by its insidious onset and poor prognosis. The genomic study that elucidates driving mutational events is fundamental to the development of gene-targeted therapy. However, research on genomic profiles of acral melanoma in Asian patients is still sparse. EXPERIMENTAL DESIGN: We carried out whole-exome sequencing (WES) on 60 acral melanoma lesions (with 55 primary samples involved), targeted deep sequencing in a validation cohort of 48 cases, RNA sequencing in 37 acral melanoma samples (all from the 60 undergoing WES), and FISH in 233 acral melanoma specimens (54 of the 60 undergoing WES included). All the specimens were derived from Asian populations. RESULTS: BRAF, NRAS, and KIT were discerned as significantly mutated genes (SMG) in acral melanoma. The detected COSMIC signature 3 related to DNA damage repair, along with the high genomic instability score, implied corresponding pathogenesis of acral melanoma. Moreover, the copy number gains of EP300 were associated with the response of acral melanoma to targeted therapy of A485 (a p300 inhibitor) and immune checkpoint blockade treatment. In addition, the temporal order in mutational processes of the samples was reconstructed, and copy-number alterations were identified as early mutational events. CONCLUSIONS: Our study provided a detailed view of genomic instability, potential therapeutic targets, and intratumoral heterogeneity of acral melanoma, which might fuel the development of personalized strategies for treating acral melanoma in Asian populations.
Asunto(s)
Melanoma , Neoplasias Cutáneas , Inestabilidad Genómica , Genómica , Humanos , Melanoma/tratamiento farmacológico , Melanoma/genética , Melanoma/patología , Mutación , Neoplasias Cutáneas/tratamiento farmacológico , Neoplasias Cutáneas/genética , Neoplasias Cutáneas/patología , Melanoma Cutáneo MalignoRESUMEN
Vitiligo is a depigmented skin disorder caused by a variety of factors, including autoimmune, metabolic disturbance or their combined effect, etc. Non-targeted metabolomic analyses have denoted that dysregulated fatty acids metabolic pathways are involved in the pathogenesis of vitiligo. However, the exact category of fatty acids that participate in vitiligo development and how they functionally affect CD8+ T cells remain undefined. We aimed to determine the difference in specific fatty acids among vitiligo patients and healthy individuals and to investigate their association with clinical features in patients with vitiligo. Serum levels of fatty acids in 48 vitiligo patients and 28 healthy individuals were quantified by performing ultra-performance liquid chromatography-tandem mass spectrometry. Univariate and multivariate analyses were carried out to evaluate the significance of differences. Moreover, flow cytometry was used to explore the effect of indicated fatty acids on the function of CD8+ T cells derived from patients with vitiligo. We demonstrated that serological level of alpha-linolenic acid (ALA) was markedly upregulated, while that of arachidonic acid (ARA), arachidic acid (AA) and behenic acid were significantly downregulated in patients with vitiligo. Moreover, ALA levels were positively associated with vitiligo area scoring index (VASI) and ARA was a probable biomarker for vitiligo. We also revealed that supplementation with ARA or nordihydroguaiaretic acid (NDGA) could suppress the function of CD8+ T cells. Our results showed that vitiligo serum has disorder-specific phenotype profiles of fatty acids described by dysregulated metabolism of polyunsaturated fatty acids. Supplementation with ARA or NDGA might promote vitiligo treatment. These findings provide novel insights into vitiligo pathogenesis that might add to therapeutic options.
Asunto(s)
Vitíligo , Ácido Araquidónico/metabolismo , Linfocitos T CD8-positivos/metabolismo , Ácidos Grasos , Ácidos Grasos Insaturados/metabolismo , Humanos , MetabolómicaRESUMEN
Vitiligo is a depigmentation disorder that develops as a result of the progressive disappearance of epidermal melanocytes. The elevated level of amino acid metabolite homocysteine (Hcy) has been identified as circulating marker of oxidative stress and known as a risk factor for vitiligo. However, the mechanism underlying Hcy-regulated melanocytic destruction is currently unknown. The present study aims to elucidate the effect of Hcy on melanocytic destruction and its involvement in the pathogenesis of vitiligo. Our results showed that Hcy level was significantly elevated in the serum of progressive vitiligo patients. Notably, Hcy induced cell apoptosis in melanocytes via activating reactive oxygen species (ROS) and endoplasmic reticulum (ER) stress protein kinase RNA-like ER kinase (PERK)-eukaryotic translation initiation factor 2α (eIF2α)-C/EBP homologous protein (CHOP) pathway. More importantly, folic acid, functioning in the transformation of Hcy, could lower the intracellular Hcy level and further reverse the apoptotic effect of Hcy on melanocytes. Additionally, Hcy disrupted melanogenesis whereas folic acid supplementation could reverse the melanogenesis defect induced by Hcy in melanocytes. Taken together, Hcy is highly increased in vitiligo patients at progressive stage, and our in vitro studies revealed that folic acid could protect melanocytes from Hcy-induced apoptosis and melanin synthesis inhibition, indicating folic acid as a potential benefit agent for patients with progressive vitiligo.