Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Sci Food Agric ; 103(7): 3437-3446, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-36680508

RESUMEN

BACKGROUND: Euryale ferox is an important cash crop and valuable tonic in traditional medicine. The seeds of E. ferox are rich in starch, which is hard to digest, and the digestion speed is significantly slower than that of rice starch. The goal of this study was to evaluate the effects of E. ferox seed-coat phenolics (EFCPs) on the digestion of E. ferox seed starch. RESULTS: EFCPs were extracted and identified by ultra-high performance liquid chromatography coupled with quadrupole time-of-flight mass spectrometry. We optimized the extraction parameters, and the final extraction yield was about 1.49%. We identified seven phenolics from the E. ferox seed-coat extracts: gallic acid, digalloylhexoside, catechin, procyanidin B2, epicatechin, ellagic acid, and epicatechin gallate. Quantitative analysis results showed that the E. ferox seed phenolics mainly distributed in the seed coat and the gallic acid, digalloylhexoside, and epicatechin gallate were three main phenolic compounds. The phenolics displayed strong inhibitory activities on α-glucosidase and α-amylase with an IC50 of 3.25 µg mL-1 and 1.36 mg mL-1 respectively. Furthermore, these phenolics could interact with starch by hydrogen bonds, which might make its starch more difficult to digest. CONCLUSION: Our investigation suggests that the EFCPs can strongly inhibit the digestion of E. ferox seed starch by inhibiting the α-amylase and α-glucosidase activities and interacting with starch by hydrogen bonds; therefore, E. ferox seeds have a promising application prospect in foods for hypoglycemia. © 2023 Society of Chemical Industry.


Asunto(s)
Extractos Vegetales , Almidón , Almidón/análisis , Extractos Vegetales/química , alfa-Glucosidasas , Fenoles/análisis , Semillas/química , Ácido Gálico/análisis , alfa-Amilasas/análisis , Digestión
2.
Mol Nutr Food Res ; 66(4): e2101002, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34932880

RESUMEN

SCOPE: Alzheimer's disease (AD) is a neurodegenerative disease with phenomena of cognitive impairments. Oxidative stress and cholinergic system dysfunction are two widely studied pathogenesis of AD. Dihydromyricetin (DMY) is a natural dihydroflavonol with many bioactivities. In this study, it is aimed to investigate the effects of DMY on cognitive impairment in d-galactose (d-gal) induced aging mice. METHODS AND RESULTS: Mice are intraperitoneally injected with d-gal for 16 weeks, and DMY is supplemented in drinking water. The results show that DMY significantly improves d-gal-induced cognitive impairments in novel object recognition and Y-maze studies. H&E and TUNEL staining show that DMY could improve histopathological changes and cell apoptosis in mice brain. DMY effectively induces the activities of catalase, superoxide dismutase and glutathione peroxidase, and reduces malondialdehyde level in mice brain and liver. Furthermore, DMY reduces cholinergic injury by inhibiting the activity of Acetylcholinesterase (AChE) in mice brain. In vitro studies show that DMY is a non-competitive inhibitor of AChE with IC50 value of 161.2 µg mL-1 . CONCLUSION: DMY alleviates the cognitive impairments in d-gal-induced aging mice partly through regulating oxidative stress and inhibition of acetylcholinesterase.


Asunto(s)
Disfunción Cognitiva , Enfermedades Neurodegenerativas , Acetilcolinesterasa/efectos adversos , Acetilcolinesterasa/metabolismo , Envejecimiento , Animales , Disfunción Cognitiva/inducido químicamente , Disfunción Cognitiva/tratamiento farmacológico , Flavonoles , Galactosa/efectos adversos , Ratones , Estrés Oxidativo
3.
Food Funct ; 12(20): 9784-9792, 2021 Oct 19.
Artículo en Inglés | MEDLINE | ID: mdl-34533153

RESUMEN

Three shell materials, lecithin (ZNP-L), chitosan (ZNP-CH) and sodium caseinate (ZNP-SC), were used to prepare core-shell zein nanoparticles. Astilbin was encapsulated as a model flavonoid to compare the influence of the shell materials on zein nanoparticles both in vitro and in vivo. The particle size was moderately increased by lecithin and sodium caseinate, but notably increased by chitosan. All the shell materials provided good redispersibility for the nanoparticles and significantly improved the colloidal stability. Chitosan and sodium caseinate significantly delayed and decreased the feces excretion of astilbin in rats, while lecithin exhibited a very weak effect. The results may be attributed to the difference in mucoadhesive properties between the shell materials. As a consequence, the bioavailability values of astilbin in rats were 18.2, 9.3 and 1.89 times increased through ZNP-CH, ZNP-SC and ZNP-L compared with that of free astilbin, respectively.


Asunto(s)
Flavonoides/farmacología , Flavonoles/farmacología , Nanocápsulas/química , Animales , Disponibilidad Biológica , Caseínas/química , Quitosano/química , Femenino , Flavonoides/química , Flavonoles/química , Lecitinas/química , Ratas , Ratas Sprague-Dawley
4.
Phytochemistry ; 163: 75-88, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31030081

RESUMEN

Cyclocarya paliurus (Batalin) Iljinsk is a medicinal plant belonging to the Juglandaceae family, and its leaves are used for a traditional sweet herbal tea with bioactivity against obesity and hyperglycaemia in China. It contains various bioactive specialised metabolites, such as flavonoids, triterpenes and their glucosides, while no glycosyltransferases (GTs) have been reported in C. paliurus to date. Herein, we identified and cloned the first glucosyltransferase C. paliurus GT1. The expression profiles of C. paliurus GT1 showed very high expression in young leaves, callus and branches, but relatively low expression in old leaves and bark and no expression in root. The recombinant C. paliurus GT1 protein was heterologously expressed in Escherichia coli and exhibited catalytic activity towards multiple flavonoids favouring substrate- and regio-specific biosynthesis. Further enzyme assays indicated a preference for certain hydroxyl group glucosylation by C. paliurus GT1. C. paliurus GT1 actively catalysed the glucosylation of flavones and flavonols, but it was less active towards isoflavones, flavanones or triterpenes. C. paliurus GT1 was also able to catalyse the attachment of sugars to the thiol (S-) or amine (N-) sites on aromatic compounds but not on aliphatic compounds. Molecular docking and site-directed mutagenesis analyses indicated that A43F, V84P, and M201Y dramatically altered the regio-selectivity and activity, and the W283M mutation and deletion of the V309-D320 region enhanced the activity and the formation of disaccharides. Herein, we present the identification and characterization of the first multi-functional glucosyltransferase in C. paliurus and provide a basis for understanding the biosynthesis of flavonoid glucosides. C. paliurus GT1 could be utilized as a synthetic biology tool for the synthesis of O-, N-, or S-glucosylated natural/unnatural products.


Asunto(s)
Flavonoides/biosíntesis , Glucósidos/biosíntesis , Glucosiltransferasas/análisis , Juglandaceae/química , Flavonoides/química , Glucósidos/química , Glucosiltransferasas/metabolismo , Juglandaceae/metabolismo , Estereoisomerismo , Especificidad por Sustrato
5.
J Biomed Mater Res A ; 106(12): 3034-3041, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30295993

RESUMEN

Deposition of amyloid-ß (Aß) aggregates and formation of neurotoxic reactive oxygen species (ROS) are significant pathological signatures of Alzheimer's disease (AD). Resveratrol (Res) is an antioxidant with the potential to treat AD. However, the bioavailability and solubility of Res is very low and it cannot entirely inhibit Cu2+ -induced Aß42 aggregation at low concentration. Herein, we combine the unique Aß absorption property of selenium nanoparticles with the natural antioxidant agent Res to form Res@SeNPs. Our in vitro biological evaluation revealed that modification of Res with SeNPs provides a synergistic effect on Cu2+ -induced Aß42 aggregation, ROS generation and, more importantly, protects PC12 cells from Aß42-Cu2+ complexes-induced cell death. It is believed that SeNPs can improve the application of Res in AD treatment as Res@SeNPs is more efficient than Res in reducing Aß42 toxicity in long-term use. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 106A: 3034-3041, 2018.


Asunto(s)
Péptidos beta-Amiloides/metabolismo , Antioxidantes/farmacología , Nanopartículas/química , Especies Reactivas de Oxígeno/metabolismo , Resveratrol/farmacología , Selenio/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Animales , Antioxidantes/química , Humanos , Células PC12 , Agregado de Proteínas/efectos de los fármacos , Agregación Patológica de Proteínas/metabolismo , Agregación Patológica de Proteínas/prevención & control , Ratas , Resveratrol/química , Selenio/química
6.
J Agric Food Chem ; 63(1): 262-8, 2015 Jan 14.
Artículo en Inglés | MEDLINE | ID: mdl-25548875

RESUMEN

Chlorogenic acid and its derivatives (CADs) are valuable bioactive plant secondary metabolites with many health benefits. In the present study, Stevia rebaudiana hairy root cultures were established, and the culture conditions for the production of CADs were optimized. The hairy roots were induced by coculture of S. rebaudiana leaves and Agrobacterium rhizogenes (C58C1) after infection, which were further verified by PCR detection of rolB and rolC genes. HPLC-MS and HPLC analysis showed that chlorogenic acid (3-caffeoylquinic acid, 3-CQA), 3,5-dicaffeoylquinic acid (3,5-CQA), and 4,5-dicaffeoylquinic acid (4,5-CQA) were the major CADs in the hairy roots. Eight single roots with rapid growth rate were selected. Among them, T3 had the highest yield of CADs. B5 medium supplemented with 40 g/L sucrose was more suitable for the production of CADs than others. Under optimal culture conditions, the total content of these three compounds reached 105.58 mg/g and total yield was 234.40 mg/100 mL.


Asunto(s)
Ácido Clorogénico/metabolismo , Extractos Vegetales/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Stevia/metabolismo , Ácido Clorogénico/química , Cromatografía Líquida de Alta Presión , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Estructura Molecular , Extractos Vegetales/química , Raíces de Plantas/química , Raíces de Plantas/metabolismo , Stevia/química , Stevia/crecimiento & desarrollo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA