RESUMEN
Background and aim: Sepsis causes an uncontrolled systemic response characterized by excessive inflammation and immune suppression, leading to multiple organ failure and death. An effective therapeutic strategy for sepsis-related syndromes is urgently needed. Hypericum sampsonii Hance (HS) is a folk herbal plant used to treat arthritis and dermatitis, but the anti-inflammatory properties of HS and its related compounds have rarely been investigated. In this study, we aimed to explore the anti-inflammatory effects of HS. Experimental procedure: Models of bacterial lipopolysaccharide (LPS)-induced activated macrophages and endotoxemia mice were used, in which the TLR4/NF-κB signaling pathway is upregulated to trigger inflammatory responses. The HS extract (HSE) was delivered into LPS-induced endotoxemia mice via oral administration. Three compounds were purified using column chromatography and preparative thin layer chromatography and were validated by physical and spectroscopic data. Results: HSE suppressed NF-κB activation and proinflammatory molecules (TNF-α, IL-6, iNOS) in LPS-activated RAW 264.7 macrophages. Furthermore, oral administration of HSE (200 mg/kg) to LPS-treated mice improved the survival rate, restored body temperature, decreased TNF-α and IL-6 in serum, and reduced IL-6 expression in bronchoalveolar lavage fluid (BALF). In lung tissues, HSE reduced LPS-induced leukocyte infiltration and the expression of proinflammatory molecules (TNF-α, IL-6, iNOS, CCL4 and CCL5). Three pure compounds isolated from HSE, including 2,4,6-trihydroxybenzophenone-4-O-geranyl ether, 1-hydroxy-7 methoxyxanthone and euxanthone, were demonstrated to exhibit anti-inflammatory activities in LPS-stimulated RAW 264.7 macrophages. Conclusion: The present study demonstrated the anti-inflammatory effects of HS in vitro and in vivo. Further clinical studies of HS in human sepsis are warranted.
RESUMEN
The mold Monascus, also called red yeast rice, anka, or koji, has been used as the natural food coloring agent and food additives for more than 1000 years in Asian countries. It has also been used in Chinese herbology and traditional Chinese medicine due to its easing digestion and antiseptic effects. However, under different culture conditions, the ingredients in Monascus-fermented products may be changed. Therefore, an in-depth understanding of the ingredients, as well as the bioactivities of Monascus-derived natural products, is important. Here, through the thorough investigation into the chemical constituents of M. purpureus wmd2424, five previously undescribed compounds, monascuspurins A-E (1-5), were isolated from the EtOAc extract of mangrove-derived fungus Monascus purpureus wmd2424 cultured in RGY medium. All the constituents were confirmed via HRESIMS and 1D- and 2D-NMR spectroscopy. Their antifungal activity was also evaluated. Our results showed that four constituents (compounds 3-5) possessed mild antifungal activity against Aspergillus niger, Penicillium italicum, Candida albicans, and Saccharomyces cerevisiae. It is worth mentioning that the chemical composition of the type strain Monascus purpureus wmd2424 has never been studied.
Asunto(s)
Monascus , Oryza , Antifúngicos/farmacología , Antifúngicos/metabolismo , Monascus/metabolismo , Hongos , Aditivos Alimentarios/metabolismo , Colorantes , Fermentación , Oryza/microbiologíaRESUMEN
Selenium is an essential micronutrient that is beneficial to human health. Selenium-containing drugs have been developed as antioxidants, anti-inflammatory, and anticancer agents. However, the synthesis of selenium-containing chalcones has not been fully explored. Therefore, we report the synthesis of novel selenophene-based chalcone analogs and reveal their biological activities as anticancer agents. Among the seven synthesized molecules, compounds 6, 8, and 10 exhibited anticancer activity with IC50 values of 19.98 ± 3.38, 38.23 ± 3.30, and 46.95 ± 5.68 µM, respectively, against human colorectal adenocarcinoma (HT-29) cells. Clonogenic assays and Western blot analysis tests further confirmed that compound 6 effectively induced apoptosis in HT-29 cells through mitochondrial- and caspase-3-dependent pathways.
Asunto(s)
Antineoplásicos , Chalcona , Chalconas , Selenio , Humanos , Chalconas/farmacología , Selenio/farmacología , Relación Estructura-Actividad , Proliferación Celular , Antineoplásicos/farmacología , Apoptosis , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral , Estructura MolecularRESUMEN
Two new chromones named cnidimol G (1) and cnidimol H (2), one new coumarin, 7-methoxy-8-(3-methoxy-3-methyl-2-oxobutyl)coumarin (3), and twenty known compounds were isolated from MeOH extract of the fruit of Cnidium monnieri (L.) Cusson. The structures of compounds were elucidated by extensive spectroscopic analyses including 1 D and 2 D NMR, HRESIMS, IR and UV. Anti-inflammatory activity of the selected isolated compounds were evaluated. Compounds 1 and 8 exhibited inhibitory activities against nitric oxide production.
Asunto(s)
Cnidium , Frutas , Cnidium/química , Frutas/química , Cromonas/farmacología , Cromonas/análisis , Extractos Vegetales/química , Cumarinas/químicaRESUMEN
The root bark of Morus alba L. (Mori Cortex) is used to treat diuresis and diabetes in Chinese traditional medicine. We evaluated different solvent extracts and bioactive components from the root bark of Morus alba L. for their antioxidant, anti-α-glucosidase, antityrosinase, and anti-inflammatory activities. Acetone extract showed potent antioxidant activity, with SC50 values of 242.33 ± 15.78 and 129.28 ± 10.53 µg/mL in DPPH and ABTS radical scavenging assays, respectively. Acetone and ethyl acetate extracts exhibited the strongest anti-α-glucosidase activity, with IC50 values of 3.87 ± 1.95 and 5.80 ± 2.29 µg/mL, respectively. In the antityrosinase assay, the acetone extract showed excellent activity, with an IC50 value of 7.95 ± 1.54 µg/mL. In the anti-inflammatory test, ethyl acetate and acetone extracts showed significant anti-nitric oxide (NO) activity, with IC50 values of 10.81 ± 1.41 and 12.00 ± 1.32 µg/mL, respectively. The content of the active compounds in the solvent extracts was examined and compared by HPLC analysis. Six active compounds were isolated and evaluated for their antioxidant, anti-α-glucosidase, antityrosinase, and anti-inflammatory properties. Morin (1) and oxyresveratrol (3) exhibited effective antioxidant activities in DPPH and ABTS radical scavenging assays. Additionally, oxyresveratrol (3) and kuwanon H (6) showed the highest antityrosinase and anti-α-glucosidase activities among all isolates. Morusin (2) demonstrated more significant anti-NO and anti-iNOS activities than the positive control, quercetin. Our study suggests that the active extracts and components from root bark of Morus alba should be further investigated as promising candidates for the treatment or prevention of oxidative stress-related diseases, hyperglycemia, and pigmentation disorders.
RESUMEN
The dried root of Ampelopsis japonica (Thunb.) Makino (A. japonica.) is a traditional medicine used to treat fever, pain, and wound healing. It exhibits anti-inflammatory, antitumor, antityrosinase, and antimelanogenic activities. In this paper, we used different solvent extracts from the root of A. japonica to determine their antioxidant activity. Acetone extract showed relatively strong antioxidant properties by 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), superoxide radical scavenging activity, and ferric reducing antioxidant power (FRAP) assays. In addition, these extracts also showed significant α-glucosidase and acetylcholinesterase (AChE) inhibitory activities. Acetone extract significantly inhibited α-glucosidase with an IC50 value of 8.30 ± 0.78 µg/mL, and ethanol extract remarkably inhibited AChE with an IC50 value of 37.08 ± 7.67 µg/mL. Using HPLC analysis and comparison with the chemical composition of various solvent extracts, we isolated seven active compounds and assessed their antioxidant, anti-α-glucosidase, and anti-AChE activities. Catechin (1), gallic acid (2), kaempferol (3), quercetin (4), resveratrol (6), and epicatechin (7) were the main antioxidant components in the root of A. japonica. According to the results of DPPH, ABTS, and superoxide radical scavenging assays, these isolates showed stronger antioxidant capacity than butylated hydroxytoluene (BHT). Moreover, 1, 3, 4, euscaphic acid (5), 6, and 7 also expressed stronger anti-α-glucosidase activity than the positive control acarbose, and all the isolated compounds had a good inhibitory effect on AChE. Molecular docking models and hydrophilic interactive modes for AChE assays suggest that 1 and 5 exhibit unique anti-AChE potency. This study indicates that A. japonica and its active extracts and components may be a promising source of natural antioxidants, α-glucosidase, and AChE inhibitors.
RESUMEN
Polygonatum sibiricum (Asparagaceae) is often used as an herbal drug in the traditional medicine of Southeast Asia. Its rhizome, called "Huang Jing", is used in traditional Chinese medicine as an immune system stimulant, hypolipidemic agent, anti-aging agent, anti-fatigue agent, and cardiovascular protectant. We investigated the antioxidant, anti-acetylcholinesterase (AChE), anti-inflammatory, and anti-α-glucosidase effects of various solvent extracts and major bioactive components of Polygonatum sibiricum (PS) and processed Polygonatum sibiricum (PPS). Dichloromethane extract of PS showed stronger antioxidant effects by DPPH, ABTS, and FRAP assays, and EtOAc extract displayed relatively high antioxidant activity by a superoxide radical scavenging test. Moreover, acetone, EtOAc, and dichloromethane extracts displayed a significant anti-α-glucosidase effect. EtOH and CH2Cl2 extracts showed effective AChE inhibitory activity. In addition, dichloromethane extract showed the best inhibition against lipopolysaccharide (LPS)-induced nitric oxide (NO) accumulation in RAW264.7 macrophages. HPLC analysis was used to investigate and compare the content of major active components of various solvent extracts of PS and PPS. Rutin showed the most effective scavenging of DPPH and ABTS free radicals, while scopoletin and isoquercetin displayed the strongest anti-α-glucosidase and anti-AChE effect, respectively. Rutin showed the best inhibition against LPS-induced NO production and also inhibited inducible nitric oxide synthase (iNOS) expression in Western blot. The molecular docking of AChE and iNOS revealed that active components could have a better antagonistic effect than positive controls (common inhibitors). This study shows that the active extracts and components of Polygonatum sibiricum have the potential to be further developed as a natural anti-AChE, anti-α-glucosidase, antioxidant and anti-inflammatory agent.
RESUMEN
The genus Cimicifuga is one of the smallest genera in the family Ranunculaceae. Cimicifugae Rhizoma originated from rhizomes of Cimicifuga simplex, and C. dahurica, C. racemosa, C. foetida, and C. heracleifolia have been used as anti-inflammatory, analgesic and antipyretic remedies in Chinese traditional medicine. Inflammation is related to many diseases. Cimicifuga taiwanensis was often used in folk therapy in Taiwan for inflammation. Phytochemical investigation and chromatographic separation of extracts from the roots of Cimicifuga taiwanensis has led to the isolation of six new compounds: cimicitaiwanins A-F (1-6, respectively). The structures of the new compounds were unambiguously elucidated on the basis of extensive spectroscopic data analysis (1D- and 2D-NMR, MS, and UV) and comparison with the literature data. The effect of some isolates on the inhibition of NO production in lipopolysaccharide-activated RAW 264.7 murine macrophages was evaluated. Of the isolates, 3-6 exhibited potent anti-NO production activity, with IC50 values ranging from 6.54 to 24.58 µM, respectively, compared with that of quercetin, an iNOS inhibitor with an IC50 value of 34.58 µM. This is the first report on metabolite from the endemic Taiwanese plant-C. taiwanensis.
Asunto(s)
CimicifugaRESUMEN
The rhizome of Anemarrhena asphodeloides Bunge (AA, family Liliaceae) is a famous and frequently used herbal drug in the traditional medicine of Northeast Asia, under vernacular name "zhimu". A. asphodeloides has been used as an anti-inflammatory, antipyretic, anti-platelet aggregation, anti-depressant, and anti-diabetic agent in traditional Chinese medicine. We examined the antioxidant, anti-acetylcholinesterase (AChE), and anti-α-glucosidase activities of various solvent extracts and the main bioactive compounds from the rhizome of A. asphodeloides. Acetone extract exhibited comparatively high antioxidant activities by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS) radical scavenging, and ferric-reducing antioxidant power (FRAP) assays. A water extract exhibited relatively strong antioxidant activity by superoxide radical scavenging test. Furthermore, dichloromethane, chloroform, and n-hexane extracts showed significant anti-α-glucosidase activities. Finally, ethanol and dichloromethane extracts exhibited relatively strong AChE inhibitory activity. HPLC analysis was used to examine and compare various solvent extracts for their compositions of isolates. We isolated four major chemical constituents and analyzed their antioxidant, anti-α-glucosidase, and AChE inhibitory activities. The bioactivity assays showed that mangiferin displayed the most potential antioxidant activities via FRAP, ABTS, DPPH, and superoxide assays and also exhibited the most effective anti-AChE and anti-α-glucosidase activities among all the isolates. The present study suggests that A. asphodeloides and its active extracts and components are worth further investigation and might be expected to develop as a candidate for the treatment or prevention of oxidative stress-related diseases, AChE inhibition, and hyperglycemia.
RESUMEN
Portulaca oleracea is a well-known species for traditional medicine and food homology in Taiwan. In traditional medicine, P. oleracea is also used to treat gastrointestinal disorders, liver inflammation, fever, severe inflammation, and headaches. We investigated antioxidant, anti-tyrosinase, and anti-α-glucosidase activities of various solvent extracts and major bioactive components from P. oleracea. Ethanol and acetone extracts showed potent DPPH, ABTS, and hydroxyl radical scavenging activities. Chloroform and n-hexane extracts displayed significant superoxide radical scavenging activity. Furthermore, ethyl acetate and acetone extracts of P. oleracea showed potent anti-tyrosinase and anti-α-glucosidase activities. Examined and compared to the various solvent extracts for their chemical compositions using HPLC analysis, we isolated seven major compounds and analyzed their antioxidant, anti-tyrosinase, and anti-α-glucosidase activities. Seven active compounds of P. oleracea, especially quercetin, rosmarinic acid, and kaempferol, exhibited obvious antioxidant, anti-tyrosinase, and anti-α-glucosidase activities. The molecular docking model and the hydrophilic interactive mode of tyrosinase and α-glucosidase revealed that active compounds might have a higher antagonistic effect than commonly inhibitors. Our result shows that the active solvent extracts and their components of P. oleracea have the potential as natural antioxidants, tyrosinase and α-glucosidase inhibitors. Our results suggest that the active solvent extracts of P. oleracea and their components have potential as natural antioxidants, tyrosinase and α-glucosidase inhibitors.
RESUMEN
Seven new compounds, including one dimer novel skeleton, chamaecyformosanin A (1); three diterpenes, chamaecyformosanins B-D (2-4); one sesquiterpene, chamaecyformosanin E (5); and two monoterpenes, chamaecyformosanins F and G (6 and 7) were isolated from the methanol extract of the bark of Chamaecyparis obtusa var. formosana. Their structures were established by the mean of spectroscopic analysis and the comparison of NMR data with those of known analogues. Their structures were elucidated on the basis of physicochemical evidence, in-depth NMR spectroscopic analysis, and high-resolution mass spectrometry. Furthermore, the isolated compounds were subjected to an evaluation of their antimicrobial activity. Metabolites 1, 3, and 4 present antibacterial activities. It is worth mentioning that the chemical composition of the bark of C. obtusa var. formosana has never been studied in the past. This is the first time the barks from C. obtusa var. formosana were studied and two new skeleton compounds, 1 and 7, were obtained.
Asunto(s)
Antiinfecciosos/química , Antiinfecciosos/farmacología , Chamaecyparis/química , Chamaecyparis/metabolismo , Diterpenos/química , Evaluación Preclínica de Medicamentos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Pruebas de Sensibilidad Microbiana , Estructura Molecular , Metabolismo Secundario , Sesquiterpenos/química , TaiwánRESUMEN
Five new compounds, eupatodibenzofuran A (1), eupatodibenzofuran B (2), 6-acetyl-8-methoxy-2,2-dimethylchroman-4-one (3), eupatofortunone (4), and eupatodithiecine (5), have been isolated from the aerial part of Eupatorium fortunei, together with 11 known compounds (6â16). Compounds 1 and 2 featured a new carbon skeleton with an unprecedented 1-(9-(4-methylphenyl)-6-methyldibe nzo[b,d]furan-2-yl)ethenone. Among the isolates, compound 1 exhibited potent inhibitory activity with IC50 values of 5.95 ± 0.89 and 5.55 ± 0.23 µM, respectively, against A549 and MCF-7 cells. The colony-formation assay demonstrated that compound 1 (5 µM) obviously decreased A549 and MCF-7 cell proliferation, and Western blot test confirmed that compound 1 markedly induced apoptosis of A549 and MCF-7 cells through mitochondrial- and caspase-3-dependent pathways.
Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Eupatorium/química , Neoplasias/tratamiento farmacológico , Fitoquímicos/química , Fitoquímicos/farmacología , Extractos Vegetales/farmacología , Acetofenonas/química , Antineoplásicos Fitogénicos/química , Apoptosis , Benzofuranos/química , Proliferación Celular , Cromonas/química , Humanos , Estructura Molecular , Neoplasias/patología , Relación Estructura-Actividad , Células Tumorales CultivadasRESUMEN
Elevated autophagy is highly associated with cancer development and progression. Fruit extracts of several plants inhibit activity of autophagy-related protease ATG4B and autophagy activity in colorectal cancer cells. However, the effects of these plant extracts in oral cancer cells remain unclear. In this study, we found that the extracted Tribulus terrestris fruit (TT-(fr)) and Xanthium strumarium fruit had inhibitory effects on autophagy inhibition in both SAS and TW2.6 oral cancer cells. Moreover, the fruit extracts had differential effects on cell proliferation of oral cancer cells. In addition, the fruit extracts hampered cell migration and invasion of oral cancer cells, particularly in TT-(fr) extracts. Our results indicated that TT-(fr) extracts consistently inhibited autophagic flux, cell growth and metastatic characteristics of oral cancer cells, suggesting TT-(fr) might contain function ingredient to suppress oral cancer cells.
Asunto(s)
Neoplasias de la Boca , Tribulus , Autofagia , Proliferación Celular , Frutas , Humanos , Neoplasias de la Boca/tratamiento farmacológico , Extractos Vegetales/farmacologíaRESUMEN
BACKGROUND: Transforming growth factorß (TGF-ß) signaling is a crucial inducer of tissue fibrosis and extracellular matrix accumulation and a vital suppressor of epithelial cell proliferation and cancer metastasis. The nature of this multifunctional cytokine has prompted the development of TGF-ß signaling inhibitors as therapeutic agents. Our research group has recently isolated the polyprenylated polycyclic acylphloroglucinol garcimultiflorone K (GMK) from the stems of Garcinia multiflora; GMK exhibits antiangiogenic activity in endothelial cells. PURPOSE: In the current study, we aimed to explore the antitumor effect and detailed mechanisms of Garcimultiflorone K in hepatocellular carcinoma cells. METHODS: Cell proliferation and viability were evaluated using the MTT assay. The migratory ability of HepG2 cells was measured using wound healing assays. The inhibitory effect of GMK against the nuclear translocation of Smad by TGF-ß was assessed through immunofluorescence staining and Western blotting. To investigate TGF-ß-dependent gene expression profiles upon GMK stimulation, RNA transcript levels were determined using reverse transcription polymerase chain reaction. The effects of GMK in Smad2-driven transcriptomic activities were studied using a reporter gene assay. Protein levels were detected using Western blotting. RESULTS: Our data revealed that GMK inhibited TGF-ß-induced cellular responses, including Smad protein phosphorylation, cell migration, and extracellular matrix production, during epithelial-mesenchymal transition (EMT). Mechanistic studies further demonstrated that GMK suppressed TGF-ß signaling by downregulating TGF-ß receptor II (TßRII). CONCLUSION: These findings elucidate that TßRII expression in hepatic cells can be specifically suppressed by GMK to attenuate metastasis and the disease-promoting effects of EMT, representing a therapeutic approach.
Asunto(s)
Carcinoma Hepatocelular/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Floroglucinol/farmacología , Factor de Crecimiento Transformador beta/metabolismo , Animales , Antineoplásicos Fitogénicos/farmacología , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Garcinia/química , Células Hep G2 , Células Estrelladas Hepáticas/efectos de los fármacos , Células Estrelladas Hepáticas/patología , Humanos , Neoplasias Hepáticas/patología , Ratones , Fosforilación/efectos de los fármacos , Ratas , Receptores de Factores de Crecimiento Transformadores beta/genética , Transducción de Señal/efectos de los fármacosRESUMEN
Qin Pi (Fraxinus chinensis Roxb.) is commercially used in healthcare products for the improvement of intestinal function and gouty arthritis in many countries. Three new secoiridoid glucosides, (8E)-4''-O-methylligstroside (1), (8E)-4''-O-methyldemethylligstroside (2), and 3'',4''-di-O-methyl-demethyloleuropein (3), have been isolated from the stem bark of Fraxinus chinensis, together with 23 known compounds (4-26). The structures of the new compounds were established by spectroscopic analyses (1D, 2D NMR, IR, UV, and HRESIMS). Among the isolated compounds, (8E)-4''-O-methylligstroside (1), (8E)-4''-O-methyldemethylligstroside (2), 3'',4''-di-O-methyldemethyloleuropein (3), oleuropein (6), aesculetin (9), isoscopoletin (11), aesculetin dimethyl ester (12), fraxetin (14), tyrosol (21), 4-hydroxyphenethyl acetate (22), and (+)-pinoresinol (24) exhibited inhibition (IC50 ≤ 7.65 µg/mL) of superoxide anion generation by human neutrophils in response to formyl-L-methionyl-L-leuckyl-L-phenylalanine/cytochalasin B (fMLP/CB). Compounds 1, 9, 11, 14, 21, and 22 inhibited fMLP/CB-induced elastase release with IC50 ≤ 3.23 µg/mL. In addition, compounds 2, 9, 11, 14, and 21 showed potent inhibition with IC50 values ≤ 27.11 µM, against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation. The well-known proinflammatory cytokines, tumor necrosis factor-alpha (TNF-α) and interleukin 6 (IL-6), were also inhibited by compounds 1, 9, and 14. Compounds 1, 9, and 14 displayed an anti-inflammatory effect against NO, TNF-α, and IL-6 through the inhibition of activation of MAPKs and IκBα in LPS-activated macrophages. In addition, compounds 1, 9, and 14 stimulated anti-inflammatory M2 phenotype by elevating the expression of arginase 1 and Krüppel-like factor 4 (KLF4). The above results suggested that compounds 1, 9, and 14 could be considered as potential compounds for further development of NO production-targeted anti-inflammatory agents.
Asunto(s)
Antiinflamatorios/farmacología , Fraxinus/química , Regulación de la Expresión Génica/efectos de los fármacos , Glucósidos Iridoides/farmacología , Corteza de la Planta/química , Animales , Antiinflamatorios/química , Antiinflamatorios/clasificación , Antiinflamatorios/aislamiento & purificación , Citocalasina B/antagonistas & inhibidores , Citocalasina B/farmacología , Regulación de la Expresión Génica/inmunología , Humanos , Interleucina-6/genética , Interleucina-6/inmunología , Glucósidos Iridoides/química , Glucósidos Iridoides/clasificación , Glucósidos Iridoides/aislamiento & purificación , Factor 4 Similar a Kruppel , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/inmunología , Elastasa de Leucocito/inmunología , Elastasa de Leucocito/metabolismo , Lipopolisacáridos/antagonistas & inhibidores , Lipopolisacáridos/farmacología , MAP Quinasa Quinasa 4/genética , MAP Quinasa Quinasa 4/inmunología , Ratones , Estructura Molecular , N-Formilmetionina Leucil-Fenilalanina/antagonistas & inhibidores , N-Formilmetionina Leucil-Fenilalanina/farmacología , Inhibidor NF-kappaB alfa/genética , Inhibidor NF-kappaB alfa/inmunología , Neutrófilos/citología , Neutrófilos/efectos de los fármacos , Neutrófilos/inmunología , Óxido Nítrico/antagonistas & inhibidores , Óxido Nítrico/metabolismo , Extractos Vegetales/química , Cultivo Primario de Células , Células RAW 264.7 , Relación Estructura-Actividad , Superóxidos/antagonistas & inhibidores , Superóxidos/metabolismo , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/inmunología , Proteínas Quinasas p38 Activadas por Mitógenos/genética , Proteínas Quinasas p38 Activadas por Mitógenos/inmunologíaRESUMEN
Myristica fragrans is a well-known species for flavoring many food products and for formulation of perfume and medicated balm. It is also used to treat indigestion, stomach ulcers, liver disorders, and, as emmenagogue, diaphoretic, diuretic, nervine, and aphrodisiac. We examined antioxidant properties and bioactive compounds in various solvent extracts from the seeds of M. fragrans. Methanol, ethanol, and acetone extracts exhibited relatively strong antioxidant activities by 2,2-diphenyl-1-(2,4,6-trinitrophenyl)hydrazyl (DPPH), 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), superoxide radical, and hydroxyl radical scavenging tests. Furthermore, methanol extracts also displayed significant anti-α-glucosidase activity. Examined and compared to the various solvent extracts for their chemical compositions using HPLC analysis, we isolated the ten higher content compounds and analyzed antioxidant and anti-α-glucosidase activities. Among the isolates, dehydrodiisoeugenol, malabaricone B and malabaricone C were main antioxidant components in seeds of M. fragrans. Malabaricone C exhibited stronger antioxidant capacities than others based on lower half inhibitory concentration (IC50) values in DPPH and ABTS radical scavenging assays, and it also showed significant inhibition of α-glucosidase. These results shown that methanol was found to be the most efficient solvent for extracting the active components from the seeds of M. fragrans, and this material is a potential good source of natural antioxidant and α-glucosidase inhibitor.
Asunto(s)
Antioxidantes/química , Inhibidores de Glicósido Hidrolasas/química , Myristica/química , Extractos Vegetales/química , Semillas/química , Acetona/química , Antioxidantes/farmacología , Etanol/química , Eugenol/análogos & derivados , Eugenol/química , Eugenol/farmacología , Inhibidores de Glicósido Hidrolasas/farmacología , Metanol/química , Resorcinoles/química , Resorcinoles/farmacología , Solventes/química , alfa-Glucosidasas/metabolismoRESUMEN
Three new compounds, 4-geranyloxy-2-hydroxy-6-isoprenyloxybenzophenone (1), hypericumone A (2) and hypericumone B (3), were obtained from the aerial parts of Hypericum sampsonii, along with six known compounds (4-9). The structures of these compounds were determined through spectroscopic and MS analyses. Hypericumone A (2), sampsonione J (8) and otogirinin A (9) exhibited potent inhibition (IC50 values ≤ 40.32 µM) against lipopolysaccharide (LPS)-induced nitric oxide (NO) generation. Otogirinin A (9) possessed the highest inhibitory effect on NO production with IC50 value of 32.87 ± 1.60 µM. The well-known proinflammatory cytokine, tumor necrosis factor-alpha (TNF-α) was also inhibited by otogirinin A (9). Western blot results demonstrated that otogirinin A (9) downregulated the high expression of inducible nitric oxide synthase (iNOS). Further investigations on the mechanism showed that otogirinin A (9) blocked the phosphorylation of MAPK/JNK and IκBα, whereas it showed no effect on the phosphorylation of MAPKs/ERK and p38. In addition, otogirinin A (9) stimulated anti-inflammatory M2 phenotype by elevating the expression of arginase 1 and Krüppel-like factor 4 (KLF4). The above results suggested that otogirinin A (9) could be considered as potential compound for further development of NO production-targeted anti-inflammatory agent.
Asunto(s)
Antiinflamatorios/farmacología , Benzofenonas/química , Hypericum/química , Floroglucinol/química , Animales , Antiinflamatorios/química , Benzofenonas/aislamiento & purificación , Espectroscopía de Resonancia Magnética con Carbono-13 , Polaridad Celular/efectos de los fármacos , Mediadores de Inflamación/metabolismo , Factor 4 Similar a Kruppel , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Metanol/química , Ratones , Proteínas Quinasas Activadas por Mitógenos/metabolismo , Modelos Biológicos , Conformación Molecular , Inhibidor NF-kappaB alfa/metabolismo , Óxido Nítrico/metabolismo , Floroglucinol/aislamiento & purificación , Fosforilación/efectos de los fármacos , Extractos Vegetales/química , Espectroscopía de Protones por Resonancia Magnética , Células RAW 264.7RESUMEN
Phytochemical reinvestigation on the whole plants of Derris laxiflora Benth. afforded two new diprenylated flavanones, derriflavanones B and C (1-2), together with thirty-two known compounds, including sixteen flavonoids (3-18), eleven aromatic compounds (19-29), and five chlorophylls (30-34). All known compounds were first isolated from this plant. The structures of these compounds were determined by analysis of the NMR spectroscopy, mass data, IR spectra, UV spectra, optical rotation and by comparison with literature data.
Asunto(s)
Derris/química , Flavanonas/química , Flavanonas/aislamiento & purificación , Flavonoides/química , Flavonoides/aislamiento & purificación , Extractos Vegetales/química , Prenilación , Análisis EspectralRESUMEN
Background Garcimultiflorone K is a novel polyprenylated polycyclic acylphloroglucinol isolated from the stems of Garcinia multiflora that exhibits promising anti-angiogenic activity in human endothelial progenitor cells (EPCs). Purpose This study sought to determine the underlying anti-angiogenic mechanisms and pharmacological properties of garcimultiflorone K. Methods We examined the anti-angiogenic effects of garcimultiflorone K and its mechanisms of action using in vitro EPC models and in vivo zebrafish embryos. Results EPCs proliferation, migration, differentiation and capillary-like tube formation were effectively and concentration-dependently inhibited by garcimultiflorone K without any signs of cytotoxicity. Our investigations revealed that garcimultiflorone K suppressed EPCs angiogenesis through Akt, mTOR, p70S6K, and eNOS signaling cascades. Notably, garcimultiflorone K dose-dependently impeded angiogenesis in zebrafish embryos. Conclusion Our data demonstrate the anti-angiogneic effects of garcimultiflorone K in both in vitro and in vivo models. Garcimultiflorone K appears to have potential in the treatment of angiogenesis-related diseases.
Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Garcinia/química , Neovascularización Patológica/tratamiento farmacológico , Floroglucinol/farmacología , Transducción de Señal/efectos de los fármacos , Inhibidores de la Angiogénesis/química , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Progenitoras Endoteliales/efectos de los fármacos , Humanos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Floroglucinol/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Pez CebraRESUMEN
Flavonoids, widely present in medicinal plants and fruits, are known to exhibit multiple pharmacological activities. In this study, we isolated a flavonoid compound, pilloin, from Aquilaria sinensis and investigated its anti-inflammatory activity in bacterial lipopolysaccharide-induced RAW 264.7 macrophages and septic mice. Pilloin inhibited NF-κB activation and reduced the phosphorylation of IκB in LPS-stimulated macrophages. Moreover, pilloin significantly suppressed the production of pro-inflammatory molecules, such as TNF-α, IL-6, COX-2 and iNOS, in LPS-treated RAW 264.7 macrophages. Additionally, pilloin suppressed LPS-induced morphological alterations, phagocytic activity and ROS elevation in RAW 264.7 macrophages. The mitogen-activated protein kinase-mediated signalling pathways (including JNK, ERK, p38) were also inhibited by pilloin. Furthermore, pilloin reduced serum levels of TNF-α (from 123.3 ± 7 to 46.6 ± 5.4 ng/mL) and IL-6 levels (from 1.4 ± 0.1 to 0.7 ± 0.1 ng/mL) in multiple organs of LPS-induced septic mice (liver: from 71.8 ± 3.2 to 36.7 ± 4.3; lung: from 118.6 ± 10.6 to 75.8 ± 11.9; spleen: from 185.9 ± 23.4 to 109.6 ± 18.4; kidney: from 160.3 ± 11.8 to 75 ± 10.8 pg/mL). In summary, our results demonstrate the anti-inflammatory potential of pilloin and reveal its underlying molecular mechanism of action.