Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Metabolites ; 10(6)2020 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-32486030

RESUMEN

After blood donation, the red blood cells (RBCs) for transfusion are generally isolated by centrifugation and then filtrated and supplemented with additive solution. The consecutive changes of the extracellular environment participate to the occurrence of storage lesions. In this study, the hypothesis is that restoring physiological levels of uric and ascorbic acids (major plasmatic antioxidants) might correct metabolism defects and protect RBCs from the very beginning of the storage period, to maintain their quality. Leukoreduced CPD-SAGM RBC concentrates were supplemented with 416 µM uric acid and 114 µM ascorbic acid and stored during six weeks at 4 °C. Different markers, i.e., haematological parameters, metabolism, sensitivity to oxidative stress, morphology and haemolysis were analyzed. Quantitative metabolomic analysis of targeted intracellular metabolites demonstrated a direct modification of several metabolite levels following antioxidant supplementation. No significant differences were observed for the other markers. In conclusion, the results obtained show that uric and ascorbic acids supplementation partially prevented the metabolic shift triggered by plasma depletion that occurs during the RBC concentrate preparation. The treatment directly and indirectly sustains the antioxidant protective system of the stored RBCs.

2.
Biotechnol Bioeng ; 114(12): 2907-2919, 2017 12.
Artículo en Inglés | MEDLINE | ID: mdl-28853155

RESUMEN

The present study reveals that supplementing sodium acetate (NaAc) strongly stimulates riboflavin production in acetone-butanol-ethanol (ABE) fermentation by Clostridium acetobutylicum ATCC 824 with xylose as carbon source. Riboflavin production increased from undetectable concentrations to ∼0.2 g L-1 (0.53 mM) when supplementing 60 mM NaAc. Of interest, solvents production and biomass yield were also promoted with fivefold acetone, 2.6-fold butanol, and 2.4-fold biomass adding NaAc. A kinetic metabolic model, developed to simulate ABE biosystem, with riboflavin production, revealed from a dynamic metabolic flux analysis (dMFA) simultaneous increase of riboflavin (ribA) and GTP (precursor of riboflavin) (PurM) synthesis flux rates under NaAc supplementation. The model includes 23 fluxes, 24 metabolites, and 72 kinetic parameters. It also suggested that NaAc condition has first stimulated the accumulation of intracellular metabolite intermediates during the acidogenic phase, which have then fed the solventogenic phase leading to increased ABE production. In addition, NaAc resulted in higher intracellular levels of NADH during the whole culture. Moreover, lower GTP-to-adenosine phosphates (ATP, ADP, AMP) ratio under NaAc supplemented condition suggests that GTP may have a minor role in the cell energetic metabolism compared to its contribution to riboflavin synthesis.


Asunto(s)
Acetona/metabolismo , Butanoles/metabolismo , Clostridium acetobutylicum/metabolismo , Etanol/metabolismo , Análisis de Flujos Metabólicos/métodos , Riboflavina/biosíntesis , Acetato de Sodio/metabolismo , Acetona/aislamiento & purificación , Reactores Biológicos/microbiología , Butanoles/aislamiento & purificación , Clostridium acetobutylicum/crecimiento & desarrollo , Simulación por Computador , Medios de Cultivo/metabolismo , Etanol/aislamiento & purificación , Fermentación , Modelos Biológicos , Riboflavina/aislamiento & purificación
3.
PLoS One ; 8(1): e53898, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23382859

RESUMEN

The metabolism of potato (Solanum tuberosum) roots constitutively over- and underexpressing hexokinase (HK, EC 2.7.1.1) was examined. An 11-fold variation in HK activity resulted in altered root growth, with antisense roots growing better than sense roots. Quantification of sugars, organic acids and amino acids in transgenic roots demonstrated that the manipulation of HK activity had very little effect on the intracellular pools of these metabolites. However, adenylate and free Pi levels were negatively affected by an increase in HK activity. The flux control coefficient of HK over the phosphorylation of glucose was measured for the first time in plants. Its value varied with HK level. It reached 1.71 at or below normal HK activity value and was much lower (0.32) at very high HK levels. Measurements of glycolytic flux and O(2) uptake rates demonstrated that the differences in glucose phosphorylation did not affect significantly glycolytic and respiratory metabolism. We hypothesized that these results could be explained by the existence of a futile cycle between the pools of hexose-Ps and carbohydrates. This view is supported by several lines of evidence. Firstly, activities of enzymes capable of catalyzing these reactions were detected in roots, including a hexose-P phosphatase. Secondly, metabolic tracer experiments using (14)C-glucose as precursor showed the formation of (14)C-fructose and (14)C-sucrose. We conclude that futile cycling of hexose-P could be partially responsible for the differences in energetic status in roots with high and low HK activity and possibly cause the observed alterations in growth in transgenic roots. The involvement of HK and futile cycles in the control of glucose-6P metabolism is discussed.


Asunto(s)
Glucosa/metabolismo , Hexoquinasa/metabolismo , Plantas Modificadas Genéticamente , Solanum tuberosum , Metabolismo Energético , Hexosafosfatos/metabolismo , Fosforilación , Raíces de Plantas/enzimología , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente/enzimología , Plantas Modificadas Genéticamente/metabolismo , Solanum tuberosum/enzimología , Solanum tuberosum/metabolismo , Ciclo del Sustrato
4.
BMC Cell Biol ; 13: 18, 2012 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-22762146

RESUMEN

BACKGROUND: The tumor microenvironment contains a vast array of pro- and anti-inflammatory cytokines that alter myelopoiesis and lead to the maturation of immunosuppressive cells known as myeloid-derived suppressor cells (MDSCs). Incubating bone marrow (BM) precursors with a combination of granulocyte-macrophage colony-stimulating factor (GM-CSF) and interleukin-6 (IL-6) generated a tumor-infiltrating MDSC-like population that impaired anti-tumor specific T-cell functions. This in vitro experimental approach was used to simulate MDSC maturation, and the cellular metabolic response was then monitored. A complementary experimental model that inhibited L-arginine (L-Arg) metabolizing enzymes in MSC-1 cells, an immortalized cell line derived from primary MDSCs, was used to study the metabolic events related to immunosuppression. RESULTS: Exposure of BM cells to GM-CSF and IL-6 activated, within 24 h, L-Arg metabolizing enzymes which are responsible for the MDSCs immunosuppressive potential. This was accompanied by an increased uptake of L-glutamine (L-Gln) and glucose, the latter being metabolized by anaerobic glycolysis. The up-regulation of nutrient uptake lead to the accumulation of TCA cycle intermediates and lactate as well as the endogenous synthesis of L-Arg and the production of energy-rich nucleotides. Moreover, inhibition of L-Arg metabolism in MSC-1 cells down-regulated central carbon metabolism activity, including glycolysis, glutaminolysis and TCA cycle activity, and led to a deterioration of cell bioenergetic status. The simultaneous increase of cell specific concentrations of ATP and a decrease in ATP-to-ADP ratio in BM-derived MDSCs suggested cells were metabolically active during maturation. Moreover, AMP-activated protein kinase (AMPK) was activated during MDSC maturation in GM-CSF and IL-6-treated cultures, as revealed by the continuous increase of AMP-to-ATP ratios and the phosphorylation of AMPK. Likewise, AMPK activity was decreased in MSC-1 cells when L-Arg metabolizing enzymes were inhibited. Finally, inhibition of AMPK activity by the specific inhibitor Compound C (Comp-C) resulted in the inhibition of L-Arg metabolizing enzyme activity and abolished MDSCs immunosuppressive activity. CONCLUSIONS: We anticipate that the inhibition of AMPK and the control of metabolic fluxes may be considered as a novel therapeutic target for the recovery of the immunosurveillance process in cancer-bearing hosts.


Asunto(s)
Metabolismo Energético/efectos de los fármacos , Factor Estimulante de Colonias de Granulocitos y Macrófagos/farmacología , Interleucina-6/farmacología , Células Mieloides/efectos de los fármacos , Proteínas Quinasas Activadas por AMP/metabolismo , Adenosina Trifosfato/metabolismo , Arginina/metabolismo , Células de la Médula Ósea/citología , Células Cultivadas , Glucosa/metabolismo , Glutamina/metabolismo , Glucólisis , Humanos , Terapia de Inmunosupresión , Células Mieloides/citología , Células Mieloides/metabolismo
5.
Immunobiology ; 217(8): 808-15, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22656888

RESUMEN

Major advances in dissecting mechanisms of NO-induced down-regulation of the anti-tumour specific T-cell function have been accomplished during the last decade. In this work, we studied the effects of a NO donor (AT38) on leukaemic Jurkat cell bioenergetics. Culturing Jurkat cells in the presence of AT38 triggered irreversible inhibition of cell respiration, led to the depletion of 50% of the intracellular ATP content and induced the arrest of cell proliferation and the loss of cell viability. Although a deterioration of the overall metabolic activity has been observed, glycolysis was stimulated, as revealed by the increase of glucose uptake and lactate accumulation rates as well as by the up-regulation of GLUT-1 and PFK-1 mRNA levels. In the presence of NO, cell ATP was rapidly consumed by energy-requiring apoptosis mechanisms; under a glucose concentration of about 12.7mM, cell death was switched from apoptosis into necrosis. Exposure of Jurkat cells to DMSO (1%, v/v), SA and AT55, the non-NO releasing moiety of AT38, failed to modulate neither cell proliferation nor bioenergetics. Thus, as for all NSAIDs, beneficial effects of AT38 on tumour regression are accompanied by the suppression of the immune system. We then showed that pre-treating Jurkat cells with low concentration of cyclosporine A, a blocker of the mitochondrial transition pore, attenuates AT38-induced inhibition of cell proliferation and suppresses cell death. Finally, we have studied and compared the effects of nitrite and nitrate on Jurkat cells to those of NO and we are providing evidence that nitrate, which is considered as a biologically inert anion, has a concentration and time-dependent immunosuppressive potential.


Asunto(s)
Metabolismo Energético/inmunología , Óxido Nítrico/inmunología , Adenosina Trifosfato/inmunología , Adenosina Trifosfato/metabolismo , Apoptosis/efectos de los fármacos , Apoptosis/inmunología , Proliferación Celular/efectos de los fármacos , Respiración de la Célula/efectos de los fármacos , Respiración de la Célula/inmunología , Relación Dosis-Respuesta a Droga , Metabolismo Energético/efectos de los fármacos , Regulación Leucémica de la Expresión Génica/efectos de los fármacos , Glucosa/inmunología , Glucosa/metabolismo , Transportador de Glucosa de Tipo 1/genética , Glucólisis/efectos de los fármacos , Glucólisis/inmunología , Humanos , Células Jurkat , Lactatos/inmunología , Lactatos/metabolismo , Leucemia de Células T/genética , Leucemia de Células T/inmunología , Leucemia de Células T/metabolismo , Necrosis/inmunología , Nitratos/farmacología , Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/metabolismo , Donantes de Óxido Nítrico/farmacología , Fosfofructoquinasa-1/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Nitrito de Sodio/farmacología , Factores de Tiempo
6.
J Biotechnol ; 152(1-2): 43-8, 2011 Mar 10.
Artículo en Inglés | MEDLINE | ID: mdl-21262283

RESUMEN

Growing tumours have acquired several mechanisms to resist to immune recognition. Among these strategies, myeloid-derived suppressor cells (MDSCs) contribute to tumour escape by suppressing T-cell specific anti-tumoural functions. The development of therapies that could specifically inhibit MDSC maturation, recruitment, accumulation and immunosuppressive functions is thus of great interest. This requires the identification of valuable biomarkers of MDSC behaviour in vitro. As for immune cells, whose energetic state is known as a biomarker of their functionality, we have characterized in vitro the metabolic and energetic behaviour of MSC-1 cells, an immortalized cell line derived from mouse MDSCs and used as model cell line. Combined results from in vitro(31)P-NMR with living cells and HPLC-MS analyses from cell extracts allowed to identify two distinct bioenergetic steady-states that coincided with exponential and stationary growth phases. While the adenylate energy charge remained constant throughout the culture duration, both the percentage of total pyrimidines, the UTP-to-ATP and PME (phosphomonoesters)-to-NTP ratios were higher at the exponential growth phase compared to the plateau phase, suggesting metabolically active cells and the production of growth-related molecules. Conversely, the NTP ratio increased at the entry of the stationary phase revealing the deterioration of the global bioenergetic status and the arrest of anabolic processes.


Asunto(s)
Células Mieloides/citología , Células Mieloides/metabolismo , Animales , Reactores Biológicos , Línea Celular , Proliferación Celular , Cromatografía Líquida de Alta Presión , Metabolismo Energético , Humanos , Espectroscopía de Resonancia Magnética , Espectrometría de Masas , Ratones , Microscopía Electrónica de Rastreo , Células Mieloides/ultraestructura , Óxidos de Nitrógeno/metabolismo , Fosfolípidos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA