Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
1.
Fish Shellfish Immunol ; 147: 109455, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38369072

RESUMEN

As a fat-soluble vitamin, vitamin D3 relies on fat to perform its biological function, affecting lipid metabolism and innate immunity. This study used different percentages of lipid and vitamin D3 diets to evaluate the synergistic effects on the growth, lipid metabolism and immunity of juvenile Eriocheir sinensis (5.83 ± 0.01 g) for 56 days, including low lipid (LL, 1.5%) and normal lipid (NL, 7.5%) and three levels of vitamin D3: low (LVD, 0 IU/kg), medium (MVD, 9000 IU/kg) and high (HVD, 27,000, IU/kg). The synergistic effect of lipid and vitamin D3 was not significant on growth but significant on ash content, total protein, hepatopancreas lipid content, hemolymph 1α,25-hydroxy vitamin D3 [1α,25(OH)2D3] content, hepatopancreas lipolysis and synthesis genes. Crabs fed normal lipid (7.5%) and medium vitamin D3 (9000 IU/kg) had the highest hepatopancreas index, hemolymph 1α,25(OH)2D3 content, antibacterial ability, immune-related genes and hepatopancreatic lipid synthesis genes expression, but down-regulated the lipolysis genes expression. In contrast, crabs fed diets with low lipid percentage (1.5%) had low growth performance, hemolymph 1α,25(OH)2D3, mRNA levels of lipid synthesis genes, antibacterial ability and immune-related gene expression. At the 1.5% lipid level, excessive or insufficient vitamin D3 supplementation led to the obstruction of ash and protein deposition, reduced growth and molting, aggravated the reduction in antioxidant capacity, hindered antimicrobial peptide gene expression and reduced innate immunity, and resulted in abnormal lipid accumulation and the risk of oxidative stress. This study suggests that diets' lipid and vitamin D3 percentage can enhance antioxidant capacity, lipid metabolism and innate immunity in E. sinensis. A low lipid diet can cause growth retardation, reduce antioxidant capacity and innate immunity, and enhance lipid metabolism disorder.


Asunto(s)
Antioxidantes , Braquiuros , Animales , Antioxidantes/metabolismo , Metabolismo de los Lípidos , Colecalciferol/farmacología , Inmunidad Innata , Antibacterianos/farmacología , Braquiuros/metabolismo
2.
Artículo en Inglés | MEDLINE | ID: mdl-36906246

RESUMEN

Liver health is important to maintain survival and growth of fish. Currently, the role of dietary docosahexaenoic acid (DHA) in improving fish liver health is largely unknown. This study investigated the role of DHA supplementation in fat deposition and liver damage caused by D-galactosamine (D-GalN) and lipopolysaccharides (LPS) in Nile tilapia (Oreochromis niloticus). Four diets were formulated as control diet (Con), Con supplemented with 1 % DHA, 2 % DHA and 4 % DHA diets, respectively. The diets were fed to 25 Nile tilapia (2.0 ± 0.1 g, average initial weight) in triplicates for four weeks. After the four weeks, 20 fish in each treatment were randomly selected and injected with a mixture of 500 mg D-GalN and 10 µL LPS per mL to induce acute liver injury. The results showed that the Nile tilapia fed on DHA diets decreased visceral somatic index, liver lipid content and serum and liver triglyceride concentrations than those fed on the Con diet. Moreover, after D-GalN/LPS injection, the fish fed on DHA diets decreased alanine aminotransferase and aspartate transaminase activities in the serum. The results of liver qPCR and transcriptomics assays together showed that the DHA diets feeding improved liver health by downregulating the expression of the genes related to toll-like receptor 4 (TLR4) signaling pathway, inflammation and apoptosis. This study indicates that DHA supplementation in Nile tilapia alleviates the liver damage caused by D-GalN/LPS through increasing lipid catabolism, decreasing lipogenesis, TLR4 signaling pathway, inflammation, and apoptosis. Our study provides novel knowledge on the role of DHA in improving liver health in cultured aquatic animals for sustainable aquaculture.


Asunto(s)
Cíclidos , Animales , Alimentación Animal/análisis , Cíclidos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos , Ácidos Docosahexaenoicos/farmacología , Ácidos Docosahexaenoicos/metabolismo , Galactosamina/toxicidad , Galactosamina/metabolismo , Inflamación/metabolismo , Lipopolisacáridos/toxicidad , Lipopolisacáridos/metabolismo , Hígado/metabolismo , Receptor Toll-Like 4/metabolismo
3.
Artículo en Inglés | MEDLINE | ID: mdl-36708962

RESUMEN

Vitellogenins (Vtgs) are essential for female reproduction in oviparous animals, yet the exact roles and mechanisms remain unknown. In the present study, we knocked out vtg1, which is the most abundant Vtg in zebrafish, Danio rerio via the CRISPR/Cas 9 technology. We aimed to identify the roles of Vtg1 and related mechanisms in reproduction and development. We found that, the Vtg1-deficient female zebrafish reduced gonadosomatic index, egg production, yolk granules and mature follicles in ovary compared to the wide type (WT). Moreover, the Vtg1-deficient zebrafish diminished hatching rates, cumulative survival rate, swimming capacity and food intake, but increased malformation rate, and delayed swim bladder development during embryo and early-larval phases. The Vtg1-deficiency in female broodstock inhibited docosahexaenoic acid-enriched phosphatidylcholine (DHA-PC) transportation from liver to ovary, which lowered DHA-PC content in ovary and offspring during larval stage. However, the Vtg1-deficient zebrafish increased gradually the total DHA-PC content via exogeneous food intake, and the differences in swimming capacity and food intake returned to normal as they matured. Furthermore, supplementing Vtg1-deficient zebrafish with dietary PC and DHA partly ameliorated the impaired female reproductive capacity and larval development during early phases. This study indicates that, DHA and PC carried by Vtg1 are crucial for female fecundity, and affect embryo and larval development through maternal-nutrition effects. This is the first study elucidating the nutrient and physiological functions of Vtg1 and the underlying biochemical mechanisms in fish reproduction and development.


Asunto(s)
Ovario , Pez Cebra , Animales , Femenino , Vitelogeninas/farmacología , Ácidos Docosahexaenoicos/farmacología , Hígado , Reproducción/fisiología , Lecitinas
4.
Br J Nutr ; 130(6): 933-943, 2023 09 28.
Artículo en Inglés | MEDLINE | ID: mdl-36573369

RESUMEN

Se is an essential trace element associated with animal growth and antioxidant and metabolic processes. However, whether Se, especially organic Se with higher bioavailability, can alleviate the adverse effects of low salinity stress on marine economic crustacean species has not been investigated. Accordingly, juvenile Pacific white shrimp (Litopenaeus vannamei) were reared in two culture conditions (low and standard salinity) fed diets supplemented with increasing levels of l-selenomethionine (0·41, 0·84 and 1·14 mg/kg Se) for 56 d, resulting in four treatments: 0·41 mg/kg under standard seawater (salinity 31) and 0·41, 0·84 and 1·14 mg/kg Se under low salinity (salinity 3). The diet containing 0·84 mg/kg Se significantly improved the survival and weight gain of shrimp under low salinity stress and enhanced the antioxidant capacity of the hepatopancreas. The increased numbers of B and R cells may be a passive change in hepatopancreas histology in the 1·14 mg/kg Se group. Transcriptomic analysis found that l-selenomethionine was involved in the regulatory pathways of energy metabolism, retinol metabolism and steroid hormones. In conclusion, dietary supplementation with 0·84 mg/kg Se (twice the recommended level) effectively alleviated the effects of low salinity stress on L. vannamei by regulating antioxidant capacity, hormone regulation and energy metabolism.


Asunto(s)
Antioxidantes , Selenio , Animales , Antioxidantes/farmacología , Antioxidantes/metabolismo , Selenio/farmacología , Transcriptoma , Hepatopáncreas/metabolismo , Selenometionina/farmacología , Estrés Fisiológico , Suplementos Dietéticos/análisis , Dieta , Estrés Salino , Alimentación Animal/análisis
5.
Am J Physiol Regul Integr Comp Physiol ; 324(3): R281-R292, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36572553

RESUMEN

The regulation of cholesterol metabolism in fish is still unclear. Statins play important roles in promoting cholesterol metabolism development in mammals. However, studies on the role of statins in cholesterol metabolism in fish are currently limited. The present study evaluated the effects of statins on cholesterol metabolism in fish. Nile tilapia (Oreochromis niloticus) were fed on control diets supplemented with three atorvastatin levels (0, 12, and 24 mg/kg diet, ATV0, ATV12, and ATV24, respectively) for 4 wk. Intriguingly, the results showed that both atorvastatin treatments increased hepatic cholesterol and triglyceride contents mainly through inhibiting bile acid synthesis and efflux, and compensatorily enhancing cholesterol synthesis in fish liver (P < 0.05). Moreover, atorvastatin treatment significantly inhibited hepatic very-low-density lipoprotein (VLDL) assembly and thus decreased serum VLDL content (P < 0.05). However, fish treated with atorvastatin significantly reduced cholesterol and triglycerides contents in adipose tissue (P < 0.05). Further molecular analysis showed that atorvastatin treatment promoted cholesterol synthesis and lipogenesis pathways, but inhibited lipid catabolism and low-density lipoprotein (LDL) uptake in the adipose tissue of fish (P < 0.05). In general, atorvastatin induced the remodeling of lipid distribution between liver and adipose tissues through blocking VLDL efflux from the liver to adipose tissue of fish. Our results provide a novel regulatory pattern of cholesterol metabolism response caused by atorvastatin in fish, which is distinct from mammals: cholesterol inhibition by atorvastatin activates hepatic cholesterol synthesis and inhibits its efflux to maintain cholesterol homeostasis, consequently reduces cholesterol storage in fish adipose tissue.


Asunto(s)
Inhibidores de Hidroximetilglutaril-CoA Reductasas , Animales , Atorvastatina/farmacología , Atorvastatina/metabolismo , Inhibidores de Hidroximetilglutaril-CoA Reductasas/farmacología , Inhibidores de Hidroximetilglutaril-CoA Reductasas/metabolismo , Lipoproteínas/metabolismo , Lipoproteínas/farmacología , Colesterol , Hígado/metabolismo , Triglicéridos , Lipoproteínas VLDL , Tejido Adiposo/metabolismo , Metabolismo de los Lípidos , Mamíferos/metabolismo
6.
Fish Shellfish Immunol ; 127: 836-842, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35843526

RESUMEN

Carbohydrates are widely distributed in nature as an important nutritional substance and energy source. However, the utilization efficiency of carbohydrates is very poor in fish. Over consumption of carbohydrates will cause excessive inflammatory response and result in lower pathogen resistance in fish. Probiotics have been widely used to prevent inflammation, but the underlying mechanism still needs more exploration. In this study, three diets, including a control diet (CD), a high-carbohydrate diet (HD) and the HD supplemented with Bacillus amyloliquefaciens SS1 (HDB) were used to feed Nile tilapia for 10 weeks. At the end of the feeding trial, fish were challenged with Aeromonas hydrophila (A. hydrophila) for 7 days. The data showed that the addition of Bacillus amyloliquefaciens SS1 (B. amyloliquefaciens SS1) significantly increased the survival rate and enhanced the respiratory burst activity of head kidney leukocytes in Nile tilapia. B. amyloliquefaciens SS1 treatment significantly elevated the anti-oxidative capability, which was evidenced by higher activities of superoxide dismutase (SOD) and total antioxidant capacity (T-AOC), and higher content of reduced glutathione (GSH) in the serum. Administration with B. amyloliquefaciens SS1 effectively suppressed inflammatory response in the liver by inhibiting nuclear factor kappa-B (NF-κB)/interleukin-1 beta (IL-1ß) inflammatory signaling pathway. In vitro analysis suggested that intestinal bacteria derived-acetate has the antioxidant capability, which may account for the alleviation of inflammation. Overall, this study demonstrated that dietary supplementation with B. amyloliquefaciens SS1 protected Nile Tilapia against A. hydrophila infection and suppressed liver inflammation by enhancing antioxidant capability.


Asunto(s)
Bacillus amyloliquefaciens , Cíclidos , Enfermedades de los Peces , Infecciones por Bacterias Gramnegativas , Aeromonas hydrophila/fisiología , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Carbohidratos , Cíclidos/metabolismo , Dieta/veterinaria , Suplementos Dietéticos/análisis , Enfermedades de los Peces/microbiología , Enfermedades de los Peces/prevención & control , Infecciones por Bacterias Gramnegativas/prevención & control , Infecciones por Bacterias Gramnegativas/veterinaria , Inflamación/prevención & control , Inflamación/veterinaria , Hígado/metabolismo
7.
Artículo en Inglés | MEDLINE | ID: mdl-35830953

RESUMEN

With climate change and intensive aquaculture development, environmental hypoxia in aquaculture water has become a common challenge for many aquatic species. Therefore, it is crucial to improve the hypoxic tolerance of animals through nutritional strategies. This study explored the positive role of dietary gamma-aminobutyric acid (GABA) supplementation in enhancing hypoxia tolerance of juvenile Eriocheir sinensis through respiratory regulation and alleviation of hypoxia-induced neural excitotoxicity. Acute hypoxia stress significantly up-regulated the mRNA expression level of hypoxia-inducible factor 1α, oxygen consumption rate and anaerobic respiratory metabolism-related enzyme activities. On the other hand, aerobic respiratory metabolism-related enzyme activities were significantly decreased. However, dietary GABA supplementation remodeled the respiratory metabolism pattern of juvenile crabs exposed to hypoxia stress. In addition, acute hypoxic stress significantly increased the contents of free glutamate and GABA in the nervous tissue. The expression levels of N-Methyl-d-aspartate-related receptor genes and calcium-dependent degradation enzyme-related genes were significantly up-regulated. Similarly, neuronal apoptosis rates, expression levels of apoptosis-related genes, and vesicular glutamate transporter genes were also significantly increased. The high-affinity neuronal glutamate transporter decreased significantly in the crabs exposed to hypoxia stress. However, dietary GABA supplementation could effectively prevent acute hypoxia stress-induced neural excitotoxicity. Furthermore, dietary GABA could significantly improve the redox status in vivo exposed to hypoxia stress. In conclusion, acute hypoxia stress can affect respiratory metabolism and redox state and induce neural excitotoxicity in juvenile E. sinensis. GABA supplementation could improve hypoxia tolerance through multiple physiological regulation pathways.


Asunto(s)
Alimentación Animal , Braquiuros , Alimentación Animal/análisis , Animales , China , Hipoxia , Alimentos Marinos , Ácido gamma-Aminobutírico/farmacología
8.
Anim Nutr ; 10: 86-98, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35647324

RESUMEN

A two-factor (2 × 3) orthogonal test was conducted to investigate the effects of dietary myo-inositol (MI) on the osmoregulation and carbohydrate metabolism of euryhaline fish tilapia (Oreochromis niloticus) under sustained hypertonic stress (20 practical salinity units [psu]). 6 diets containing either normal carbohydrate (NC, 30%) or high carbohydrate (HC, 45%) levels, with 3 levels (0, 400 and 1,200 mg/kg diet) of MI, respectively, were fed to 540 fish under 20 psu for 8 weeks. Dietary MI supplementation significantly improved growth performance and crude protein content of whole fish, and decreased the content of crude lipid of whole fish (P < 0.05). Curled, disordered gill lamella and cracked gill filament cartilage were observed in the gill of fish fed diets without MI supplementation. The ion transport capacity in gill was significantly improved in the 1,200 mg/kg MI supplementation groups compared with the 0 mg/kg MI groups (P < 0.05). Moreover, the contents of Na+, K+, Cl- in serum were markedly reduced with the dietary MI supplementation (P < 0.05). The fish fed 1,200 mg/kg MI supplementation had the highest MI content in the gills and the lowest MI content in the serum (P < 0.05). Additionally, the fish fed with 1,200 mg/kg MI supplementation had the highest MI synthesis capacity in gills and brain (P < 0.05). Dietary MI markedly promoted the ability of carbohydrate metabolism in liver (P < 0.05). Moreover, fish in the 1,200 mg/kg MI groups had the highest antioxidant capacity (P < 0.05). This study indicated that high dietary carbohydrate would intensify stress, and impair the ability of osmoregulation in tilapia under a long-term hypersaline exposure. The supplementation of MI at 1,200 mg/kg in the high carbohydrate diet could promote carbohydrate utilization and improve the osmoregulation capacity of tilapia under long-term hypertonic stress.

9.
Antioxidants (Basel) ; 11(6)2022 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-35740040

RESUMEN

Phospholipids have an important antioxidant effect on animals. The effects of different dietary phospholipid sources on the growth, antioxidant activity, immunity, and gut microbiota of female broodstock of Pacific white shrimp Litopenaeus vannamei were investigated. Four isoproteic and isolipid semi-purified diets containing 4% soybean lecithin (SL), egg yolk lecithin (EL), or krill oil (KO) and a control diet without phospholipid supplementation were fed to female broodstock of L. vannamei (34.7 ± 4.2 g) for 28 days. The growth performance, antioxidative capacity, and innate immunity of the female broodstock fed phospholipid supplemented diets were improved regardless of sources compared with the control shrimp. The effects on growth and antioxidant capacity in female shrimp fed the KO diet were highest. The innate immunity of female shrimp fed the EL and KO diets were significantly higher than shrimp fed the SL diet. Dietary phospholipid supplementation increased gut microbiota diversity and richness, and the Chao1 and ACE values in the KO group were significantly higher than in the control group. The richness of Proteobacteria, Photobacterium, and Vibrio decreased, whereas the richness of Firmicutes and Bacteroidetes increased in the shrimp fed the KO diet compared with the shrimp fed the SL and EL diets. The interactions of gut microbiota in shrimp fed the KO diet were the most complex, and the positive interaction was the largest among all the treatments. The functional genes of gut microbiota in shrimp fed the KO diet were significantly enriched in lipid metabolism and terpenoid/polyketide metabolism pathways. Spearman correlation analysis showed that Fusibacter had significantly positive correlations with antioxidant activity (total antioxidant capacity, superoxide dismutase, glutathione peroxidase), immune enzyme activity (phenoloxidase and lysozyme), and immune gene expression (C-type lectin 3, Caspase-1). All findings suggest that dietary phospholipids supplementation can improve the growth and health status of female L. vananmei broodstock. Krill oil is more beneficial in improving the antioxidant capacity and innate immunity than other dietary phospholipid sources. Furthermore, krill oil can help establish the intestinal immune barrier by increasing the richness of Fusibacter and promote the growth of female shrimp. Fusibacter may be involved in iron metabolism to improve the antioxidant capacity of female shrimp.

10.
Fish Shellfish Immunol ; 124: 480-489, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35489590

RESUMEN

Inhibitory neurotransmitter gamma-aminobutyric acid (GABA) is an immunomodulator to inhibit immune-mediated pro-inflammatory response and has been used to treat various immune-related diseases in mammals. However, the immunoregulatory effect of GABA in crustaceans has not been reported. This study evaluates the regulatory effect of dietary GABA supplementation on the innate immune status and immunoregulatory potential in lipopolysaccharide (LPS)-induced immune response in juvenile Eriocheir sinensis. Juvenile crabs were fed with six diets supplemented with graded GABA levels (0, 40, 80, 160, 320 and 640 mg/kg dry matter) for 8 weeks and then 24 h LPS challenge test was carried out. The results showed that dietary GABA supplementation significantly decreased mortality at 4 and 8 weeks. Moreover, the hemocyanin content, acid phosphatase, and alkaline phosphatase activities significantly increased in the crabs fed GABA supplementation compared with the control. On the contrary, the alanine aminotransferase and alanine aminotransferase activities in serum decreased significantly in the GABA supplementation groups compared with the control. Similarly, superoxide dismutase activity, glutathione content, and the transcriptional expression of the antioxidant-related genes and immune-related genes were significantly higher in the GABA supplementation groups than in the control. In addition, the mRNA expressions of anti-lipopolysaccharide factors (ALF 1, ALF 2, ALF 3) and inflammatory signaling pathways related genes (TLR, Myd88, Relish, LITAF, P38-MAPK, ADAM17) were significantly up-regulated in LPS stimulation groups compared with PBS treatment. Meanwhile, pro-apoptosis-related genes' mRNA expressions were significantly up-regulated, and anti-apoptosis-related genes were significantly down-regulated under LPS stimulation compared with PBS treatment. However, GABA pretreatment effectively alleviated LPS-induced immune overresponse and apoptosis. Therefore, this study demonstrates that dietary GABA supplementation could be used as an immunomodulator to improve the non-specific immunity and antioxidant capacity and alleviate the immune-mediated immune overresponse of juvenile E. sinensis.


Asunto(s)
Braquiuros , Lipopolisacáridos , Alanina Transaminasa , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Braquiuros/metabolismo , China , Dieta/veterinaria , Inmunidad Innata , Lipopolisacáridos/farmacología , Mamíferos/metabolismo , ARN Mensajero , Ácido gamma-Aminobutírico/farmacología
11.
Front Nutr ; 9: 830934, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35252307

RESUMEN

Research on nutrition and feed development for the broodstock of the Pacific white shrimp, Litopenaeus vannamei, is rare, and a poor broodstock quality is a critical factor restricting the seed supply in shrimp farming. As an essential nutrient for the gonadal development of L. vannamei, one control diet (no phospholipid) and three typical phospholipids (soybean lecithin, egg yolk lecithin, and krill oil) were evaluated in a semipurified diet of 4% phospholipid for a 28-day trial (initial weight 34.7 ± 4.2 g). Dietary phospholipid supplementation significantly promoted the ovarian maturation of female L. vannamei. Compared with soybean lecithin and egg yolk lecithin, krill oil showed the best positive results. Shrimp fed with a diet krill oil has obtained a significantly higher gonadosomatic index, yolk particle deposition, lipid accumulation, and estrogen secretion than from other sources. Ovary lipidomic analysis showed that the krill oil enriched the lipid composition of the ovary. The "glycerophospholipid metabolism" and "sphingolipid metabolism" pathways were significantly varied via topological pathway analysis. Genes and hub genes, with significantly different expression levels, were significantly enriched in the "fatty acid metabolism pathway," "glycerophospholipid metabolism," and "arachidonic acid metabolism" pathways by transcriptomic analysis. Correlation analysis of the transcriptome and lipidomics showed that the differential gene "hormone-sensitive lipase-like" (HSL) was positively correlated with various lipids [triglycerides (TG), phosphatidic acid (PA), phosphatidylserine (P), phosphatidylethanolamine (PE), glucosylceramide (GlcCer), phosphatidylglycerol (PG), and phosphatidylinositol (PI)] but was negatively correlated with diacylglycerol (DG), lysophosphatidylethanolamine (LPE), and sphingomyelin (SM). In conclusion, the dietary phospholipids, especially krill oil as a phospholipid source, can promote the development of L. vannamei ovaries by increasing the accumulation of nutrients such as triglycerides and sterols, and the secretion of estrogen or related hormones, such as estradiol and methylfarneside, by affecting the metabolism of glycerol phospholipids and some key fatty acids.

12.
Food Chem ; 382: 132367, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35152027

RESUMEN

The wide use of high-fat diet (HFD) causes negative effects on flesh quality in farmed fish. l-carnitine, a lipid-lowering additive, enhances mitochondrial fatty acid ß-oxidation. However its roles in alleviating the effects of HFD on flesh quality in fish are unknown. We fed Nile tilapia with medium-fat diet (MFD, 6% dietary lipid), high-fat diet (HFD, 12% dietary lipid) and HFCD supplemented with l-carnitine (HFCD + 400 mg/kg l-carnitine) for 10 weeks. The HFD-fed fish had higher fat deposition, pH value, myofiber density and flesh hardness than those fed on MFD. However, feeding the fish with the HFCD improved lipid catabolism, which increased significantly lactic acid content and myofiber diameter in muscle, thus reduced pH and hardness values. HFCD also reduced endoplasmic reticulum stress and myofiber apoptosis caused by HFD in the fish. Our study suggests that dietary l-carnitine supplementation alleviates the negative effects of HFD on flesh quality of farmed fish.


Asunto(s)
Cíclidos , Alimentación Animal/análisis , Animales , Carnitina/metabolismo , Cíclidos/metabolismo , Dieta , Dieta Alta en Grasa/efectos adversos , Suplementos Dietéticos , Dureza , Concentración de Iones de Hidrógeno
13.
Br J Nutr ; 127(5): 666-678, 2022 03 14.
Artículo en Inglés | MEDLINE | ID: mdl-33910655

RESUMEN

This study evaluated the effects of dietary myo-inositol (MI) on growth performance, antioxidant status and lipid metabolism of juvenile Chinese mitten crab (Eriocheir sinensis) fed different percentage of lipid. Crabs (4·58 (sem 0·05) g) were fed four diets including a normal lipid diet (N, containing 7 % lipid and 0 mg/kg MI), N with MI supplementation (N + MI, containing 7 % lipid and 1600 mg/kg MI), a high lipid diet (H, containing 13 % lipid and 0 mg/kg MI) and H with MI supplementation (H + MI, containing 13 % lipid and 1600 mg/kg MI) for 8 weeks. The H + MI group showed higher weight gain and specific growth rate than those in the H group. The dietary MI could improve the lipid accumulations in the whole body, hepatopancreas and muscle as a result of feeding on the high dietary lipid (13 %) in crabs. Besides, the crabs fed the H + MI diets increased the activities of antioxidant enzymes but reduced the malondialdehyde content in hepatopancreas compared with those fed the H diets. Moreover, dietary MI enhanced the expression of genes involved in lipid oxidation and exportation, yet reduced lipid absorption and synthesis genes expression in the hepatopancreas of crabs fed the H diet, which might be related to the activation of inositol 1,4,5-trisphosphate receptor (IP3R)/calmodulin-dependent protein kinase kinase-ß (CaMKKß)/adenosine 5'-monophosphate-activated protein kinase (AMPK) signalling pathway. This study demonstrates that MI could increase lipid utilisation and reduce lipid deposition in the hepatopancreas of E. sinensis fed a high lipid diet through IP3R/CaMKKß/AMPK activation. This work provides new insights into the function of MI in the diet of crustaceans.


Asunto(s)
Alimentación Animal , Antioxidantes , Proteínas Quinasas Activadas por AMP/metabolismo , Alimentación Animal/análisis , Animales , Antioxidantes/metabolismo , Antioxidantes/farmacología , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , China , Grasas de la Dieta/farmacología , Hepatopáncreas/metabolismo , Inmunidad Innata , Inositol/farmacología , Metabolismo de los Lípidos
14.
J Agric Food Chem ; 69(43): 12794-12806, 2021 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-34677964

RESUMEN

Vitamin D3 (vit-D3), as an indispensable and fat-soluble nutrient, is associated with skeletal mineralization and health in mammals. However, such associations have not been well studied in economically important crustaceans. Six levels of vit-D3 with isonitrogenous and isolipidic diets were used to feed Eriocheir sinensis. The range of optimal vit-D3 requirements is 5685.43-10,000 IU/kg based on growth. The crabs fed 9000 IU/kg vit-D3 showed the best growth performance. This vit-D3 dose significantly increased antioxidant capacity in the hepatopancreas and intestine and was optimal for molting and innate immunity via quantitative polymerase chain reaction analysis. Transcriptomics analyses indicate that vit-D3 could alter protein processing in the endoplasmic reticulum, steroid biosynthesis, and antigen processing and presentation. As shown by the enzyme-linked immunosorbent assay, vit-D3 could improve vitamin D receptor, retinoic acid receptor, and C-type lectins concentrations. The 1α,25-dihydroxy vit-D3 content in serum was significantly higher in 3000-9000 IU/kg vit-D3. The study suggests that dietary vit-D3 and its metabolites can regulate molting and innate immunity in crabs.


Asunto(s)
Antioxidantes , Braquiuros , Alimentación Animal/análisis , Animales , Braquiuros/genética , China , Colecalciferol , Suplementos Dietéticos , Inmunidad Innata , Muda , Receptores de Calcitriol/genética
15.
J Steroid Biochem Mol Biol ; 210: 105862, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33675950

RESUMEN

This study investigates the effects of vitamin D3 (VD3) on growth performance, antioxidant capacity, immunity and molting of larval Chinese mitten crab Eriocheir sinensis. A total of 6,000 larvae (7.52 ± 0.10 mg) were fed with six isonitrogenous and isolipidic experimental diets with different levels of dietary VD3 (0, 3000, 6000, 9000, 12000 and 36000 IU/kg) respectively for 23 days. The highest survival and molting frequency were found in crabs fed 6000 IU/kg VD3. Weight gain, specific growth rate, and carapace growth significantly increased in crabs fed 3000 and 6000 IU/kg VD3 compared to the control. Broken-line analysis of molting frequency, weight gain and specific growth rate against dietary VD3 levels indicates that the optimal VD3 requirement for larval crabs is 4825-5918 IU/kg. The highest whole-body VD3 content occurred in the 12000 IU/kg VD3 group, and the 25-dihydroxy VD3 content decreased with the increase of dietary VD3. The malonaldehyde content was lower than the control. Moreover, the superoxide dismutase activity, glutathione peroxidase and total antioxidant capacity of crab fed 6000 IU/kg VD3 were significantly higher than in control. Crabs fed 9000 IU/kg showed the highest survival after 120 h of salinity stress, and the relative mRNA expressions indicate vitamin D receptor (VDR) is the important regulatory element in molting and innate immunity. The molting-related gene expressions showed that the response of crab to salinity was self-protective. This study would contribute to a new understanding of the molecular basis underlying molting and innate immunity regulation by vitamin D3 in E. sinensis.


Asunto(s)
Antioxidantes/metabolismo , Braquiuros/efectos de los fármacos , Braquiuros/fisiología , Colecalciferol/farmacología , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Acuicultura , Braquiuros/inmunología , Colecalciferol/metabolismo , Suplementos Dietéticos , Expresión Génica/efectos de los fármacos , Larva/efectos de los fármacos , Larva/fisiología , Muda , Receptores de Calcitriol/genética , Estrés Salino , Tasa de Supervivencia , Aumento de Peso
16.
Br J Nutr ; 126(2): 161-171, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-33046150

RESUMEN

A high-carbohydrate diet could achieve a protein-sparing effect, but it may cause negative impacts on the growth condition of fish due to their poor utilisation ability of carbohydrate. How to reduce the adverse effects caused by a high-carbohydrate diet is important for the development of aquaculture. In the present study, we aimed to identify whether inulin could attenuate the metabolic syndrome caused by a high-carbohydrate diet in fish. Nile tilapia (Oreochromis niloticus) (1·19 (sd 0·01) g) were supplied with 35 % carbohydrate (CON), 45 % carbohydrate (HC) and 45 % carbohydrate + 5 g/kg inulin (HCI) diets for 10 weeks. The results showed that addition of inulin improved the survival rate when fish were challenged with Aeromonas hydrophila, indicating that inulin had an immunostimulatory effect. Compared with the HC group, the HCI group had lower lipid accumulation in liver and the gene expression analyses indicated that addition of inulin down-regulated genes related to lipogenesis and up-regulated genes relevant to ß-oxidation significantly (P < 0·05). Higher liver glycogen and glucose tolerance were found in the HCI group compared with the HC group (P < 0·05). These results indicated that inulin could alleviate the metabolic syndrome induced by a high-carbohydrate diet. Furthermore, addition of inulin to a high-carbohydrate diet changed the intestinal bacterial composition and significantly increased the concentration of acetic acid and propionic acid in fish gut which have the potential to increase pathogen resistance and regulate metabolic characteristics in fish. Collectively, our results demonstrated a possible causal role for the gut microbiome in metabolic improvements induced by inulin in fish.


Asunto(s)
Fenómenos Fisiológicos Nutricionales de los Animales , Cíclidos , Enfermedades de los Peces , Microbioma Gastrointestinal , Inulina/farmacología , Síndrome Metabólico , Alimentación Animal/análisis , Animales , Dieta/veterinaria , Suplementos Dietéticos , Síndrome Metabólico/veterinaria
17.
Animals (Basel) ; 10(12)2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-33266099

RESUMEN

To determine the response of Pacific white shrimp Litopenaeus vannamei to different levels of dietary choline, juvenile white shrimp (1.75 ± 0.09 g) were fed six semi-purified diets supplemented with 0 (control), 2000, 4000, 6000, 8000, and 12,000 mg/kg choline chloride for eight weeks. Growth performance, whole-body composition, serum characteristics and hepatopancreatic antioxidant indexes were evaluated. Meanwhile, serum metabolome and hepatopancreas transcriptome were performed to examine the overall difference in metabolite and gene expression. The weight gain, survival, specific growth rate, condition factor and hepatosomatic index were not affected by dietary choline levels. The shrimp fed 6000 mg/kg dietary choline chloride gained the maximal whole-body crude protein, which was significantly higher than that of shrimp fed with 12,000 mg/kg dietary choline. Serum total cholesterol of shrimp fed 6000 mg/kg dietary choline was higher than that in shrimp fed 4000 mg/kg choline. Dietary choline significantly decreased malondialdehyde content, superoxide dismutase, and glutathione peroxidase activities in shrimp hepatopancreas. Compared with the shrimp fed 6000 mg/kg dietary choline chloride, the glycerophospholipid metabolism pathway was significantly enriched in the shrimp fed 0 mg/kg dietary choline chloride, and the choline content and bile salt-activated lipase-like expression were upregulated. The expression of trypsin-1-like in protein digestion and absorption pathway was significantly downregulated in the shrimp fed 12,000 mg/kg dietary choline chloride. Apolipoprotein D might be a potential biomarker in shrimp, and dietary choline played an important role in lipid metabolism, especially in the reduction of oxidative damage in L. vannamei. Based on the results of weight gain and degree of oxidative damage, 1082 mg/kg dietary choline could meet the growth requirement of L. vannamei, but 2822 mg/kg dietary choline was needed to reduce peroxidation damage.

18.
Animals (Basel) ; 10(11)2020 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-33238508

RESUMEN

This study investigated the effect of dietary myo-inositol (MI) on alleviating the adverse effect of the high carbohydrate diet in Nile tilapia (Oreochromis niloticus). Six diets contained either low carbohydrate (LC 30%) or high carbohydrate (HC 45%) with three levels of MI supplementation (0, 400 and 1200 mg/kg diet) to each level of the carbohydrate diet. After an 8-week trial, the fish fed 400 mg/kg MI under HC levels had the highest weight gain and fatness, but the fish fed 1200 mg/kg MI had the lowest hepatosomatic index, visceral index and crude lipid in the HC group. The diet of 1200 mg/kg MI significantly decreased triglyceride content in the serum and liver compared with those fed the MI supplemented diets regardless of carbohydrate levels. Dietary MI decreased triglyceride accumulation in the liver irrespective of carbohydrate levels. The content of malondialdehyde decreased with increasing dietary MI at both carbohydrate levels. Fish fed 1200 mg/kg MI had the highest glutathione peroxidase, superoxide dismutase, aspartate aminotransferase and glutamic-pyruvic transaminase activities. The HC diet increased the mRNA expression of key genes involved in lipid synthesis (DGAT, SREBP, FAS) in the fish fed the diet without MI supplementation. Dietary MI significantly under expressed fatty acid synthetase in fish fed the HC diets. Moreover, the mRNA expression of genes related to lipid catabolism (CPT, ATGL, PPAR-α) was significantly up-regulated with the increase of dietary MI levels despite dietary carbohydrate levels. The gene expressions of gluconeogenesis, glycolysis and MI biosynthesis were significantly down-regulated, while the expression of the pentose phosphate pathway was up-regulated with the increase of MI levels. This study indicates that HC diets can interrupt normal lipid metabolism and tend to form a fatty liver in fish. Dietary MI supplement can alleviate lipid accumulation in the liver by diverging some glucose metabolism into the pentose phosphate pathway and enhance the antioxidant capacity in O. niloticus.

19.
Fish Shellfish Immunol ; 106: 574-582, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32798696

RESUMEN

The current study aims to investigate the effects of dietary T-2 toxin on the intestinal health and microflora in the juvenile Chinese mitten crab (Eriocheir sinensis) with an initial weight 2.00 ± 0.05 g. Juvenile crabs were fed with experimental diets supplemented with T-2 toxin at 0 (control), 0.6 (T1 group), 2.5 (T2 group) and 5.0 (T3 group) mg/kg diet for 8 weeks. Dietary T-2 toxin increased the malondialdehyde (MDA) content and the expression of Kelch-like ECH-associated protein 1 (keap1) gene while the expression of cap 'n' collar isoform C (CncC) decreased in the intestine. The activities of glutathione peroxidase (GSH-Px) and total anti-oxidation capacity (T-AOC) in the intestine increased only in the lower dose of dietary T-2. Dietary T-2 toxin significantly increased the mRNA expression of caspase-3, caspase-8, Bax and mitogen-activated protein kinase (MAPK) genes and the ratio of Bax to Bcl-2 accompanied with a reduction of Bcl-2 expression. Furthermore, T-2 toxin decreased the mRNA levels of antimicrobial peptides (AMPs), peritrophic membrane (PM1 and PM2) and immune regulated nuclear transcription factors (Toll-like receptor: TLR, myeloid differentiation primary response gene 88: Myd88, relish and lipopolysaccharide-induced TNF-α factor: LITAF). The richness and diversity of the gut microbiota were also affected by dietary T-2 toxin in T3 group. The similar dominant phyla in the intestine of the Chinese mitten crab in the control and T3 groups were found including Bacteroidetes, Firmicutes, Tenericutes and Proteobacteria. Moreover, the inclusion of dietary T-2 toxin of 4.6 mg/kg significantly decreased the richness of Bacteroidetes and increased the richness of Firmicutes, Tenericutes and Proteobacteria in the intestine. At the genus level, Dysgonomonas and Romboutsia were more abundant in T3 group than those in the control. However, the abundances of Candidatus Bacilloplasma, Chryseobacterium and Streptococcus in T3 group were lower than those in the control. This study indicates that T-2 toxin could cause oxidative damage and immunosuppression, increase apoptosis and disturb composition of microbiota in the intestine of Chinese mitten crab.


Asunto(s)
Braquiuros/inmunología , Microbioma Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/efectos de los fármacos , Toxina T-2/metabolismo , Alimentación Animal/análisis , Animales , Braquiuros/efectos de los fármacos , Dieta/veterinaria , Suplementos Dietéticos/análisis , Relación Dosis-Respuesta a Droga , Microbioma Gastrointestinal/fisiología , Tracto Gastrointestinal/fisiología , Distribución Aleatoria , Toxina T-2/administración & dosificación
20.
J Nutr ; 150(9): 2322-2335, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32720689

RESUMEN

BACKGROUND: Fish cannot use carbohydrate efficiently and instead utilize protein for energy supply, thus limiting dietary protein storage. Protein deposition is dependent on protein turnover balance, which correlates tightly with cellular energy homeostasis. Mitochondrial fatty acid ß-oxidation (FAO) plays a crucial role in energy metabolism. However, the effect of remodeled energy homeostasis caused by inhibited mitochondrial FAO on protein deposition in fish has not been intensively studied. OBJECTIVES: This study aimed to identify the regulatory role of mitochondrial FAO in energy homeostasis maintenance and protein deposition by studying lipid, glucose, and protein metabolism in fish. METHODS: Carnitine-depleted male Nile tilapia (initial weight: 4.29 ± 0.12 g; 3 mo old) were established by feeding them with mildronate diets (1000 mg/kg/d) for 6 wk. Zebrafish deficient in the carnitine palmitoyltransferase 1b gene (cpt1b) were produced by using CRISPR/Cas9 gene-editing technology, and their males (154 ± 3.52 mg; 3 mo old) were used for experiments. Normal Nile tilapia and wildtype zebrafish were used as controls. We assessed nutrient metabolism and energy homeostasis-related biochemical and molecular parameters, and performed 14C-labeled nutrient tracking and transcriptomic analyses. RESULTS: The mitochondrial FAO decreased by 33.1-88.9% (liver) and 55.6-68.8% (muscle) in carnitine-depleted Nile tilapia and cpt1b-deficient zebrafish compared with their controls (P < 0.05). Notably, glucose oxidation and muscle protein deposition increased by 20.5-24.4% and 6.40-8.54%, respectively, in the 2 fish models compared with their corresponding controls (P < 0.05). Accordingly, the adenosine 5'-monophosphate-activated protein kinase/protein kinase B-mechanistic target of rapamycin (AMPK/AKT-mTOR) signaling was significantly activated in the 2 fish models with inhibited mitochondrial FAO (P < 0.05). CONCLUSIONS: These data show that inhibited mitochondrial FAO in fish induces energy homeostasis remodeling and enhances glucose utilization and protein deposition. Therefore, fish with inhibited mitochondrial FAO could have high potential to utilize carbohydrate. Our results demonstrate a potentially new approach for increasing protein deposition through energy homeostasis regulation in cultured animals.


Asunto(s)
Ácidos Grasos/metabolismo , Glucosa/metabolismo , Metilhidrazinas/farmacología , Mitocondrias/metabolismo , Proteínas/metabolismo , Adyuvantes Inmunológicos/farmacología , Animales , Carnitina O-Palmitoiltransferasa/genética , Carnitina O-Palmitoiltransferasa/metabolismo , Células Cultivadas , Cíclidos , Citocromos b/genética , Citocromos b/metabolismo , ADN , Metabolismo Energético , Hepatocitos/efectos de los fármacos , Hepatocitos/fisiología , Homeostasis , Insulina , Masculino , Mutación , Oxidación-Reducción , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA