Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 14(3): 3546-3562, 2020 03 24.
Artículo en Inglés | MEDLINE | ID: mdl-32069025

RESUMEN

Photothermal treatment (PTT) involving a combination of therapeutic modalities recently emerged as an efficient alternative for combating biofilm. However, PTT-related local high temperature may destroy the surrounding healthy tissues. Herein, we present an all-in-one phototherapeutic nanoplatform consisting of l-arginine (l-Arg), indocyanine green (ICG), and mesoporous polydopamine (MPDA), namely, AI-MPDA, to eliminate the already-formed biofilm. The fabrication process included surface modification of MPDA with l-Arg and further adsorption of ICG via π-π stacking. Under near-infrared (NIR) exposure, AI-MPDA not only generated heat but also produced reactive oxygen species, causing a cascade catalysis of l-Arg to release nitric oxide (NO). Under NIR irradiation, biofilm elimination was attributed to the NO-enhanced photodynamic therapy and low-temperature PTT (≤45 °C). Notably, the NIR-triggered all-in-one strategy resulted in severe destruction of bacterial membranes. The phototherapeutic AI-MPDA also displayed good cytocompatibility. NIR-irradiated AI-MPDA nanoparticles not only prevented bacterial colonization but also realized a rapid recovery of infected wounds. More importantly, the all-in-one phototherapeutic platform displayed effective biofilm elimination with an efficiency of around 100% in a abscess formation model. Overall, this low-temperature phototherapeutic platform provides a reliable tool for combating already-formed biofilms in clinical applications.


Asunto(s)
Antibacterianos/farmacología , Arginina/farmacología , Verde de Indocianina/farmacología , Indoles/farmacología , Óxido Nítrico/farmacología , Polímeros/farmacología , Temperatura , Adsorción , Antibacterianos/química , Arginina/química , Biopelículas/efectos de los fármacos , Verde de Indocianina/química , Indoles/química , Rayos Infrarrojos , Pruebas de Sensibilidad Microbiana , Microscopía Electrónica de Transmisión , Estructura Molecular , Nanopartículas/química , Óxido Nítrico/química , Tamaño de la Partícula , Terapia Fototérmica , Polímeros/química , Porosidad , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie
2.
Biomater Sci ; 8(7): 1840-1854, 2020 Mar 31.
Artículo en Inglés | MEDLINE | ID: mdl-31967110

RESUMEN

Biomaterial-associated bacterial infection is one of the major causes of implant failure. The treatment of such an implant infection typically requires the elimination of bacteria and acceleration of tissue regeneration around implants simultaneously. To address this issue, an ideal implanted material should have the dual functions of bacterial infection therapy and tissue regeneration at the same time. Herein, an enzyme-responsive nanoplatform was fabricated in order to treat implant-associated bacterial infection and accelerate tissue regeneration in vivo. Firstly, Ag nanoparticles were pre-encapsulated in mesoporous silica nanoparticles (MSNs) by a one-pot method. Then, poly-l-glutamic acid (PG) and polyallylamine hydrochloride (PAH) were assembled by the layer-by-layer (LBL) assembly technique on MSN-Ag to form LBL@MSN-Ag nanoparticles. Furthermore, the LBL@MSN-Ag nanoparticles were deposited on the surface of polydopamine-modified Ti substrates. PG is a homogeneous polyamide composed of an amide linkage, which can be degraded by glutamyl endonuclease secreted by Staphylococcus aureus. Inductively coupled plasma spectroscopy (ICP) results proved that the LBL@MSN-Ag particles show a significant enzyme responsive release of Ag ions. Furthermore, results of antibacterial experiments in vitro showed that the Ti substrates modified with an LBL@MSN-Ag nanocoating presented an excellent antibacterial effect. As for an animal experiment in vivo, in a bacterium infected femur-defect rat model, the modified Ti implants effectively treated bacterial infection. More importantly, the results of micro-CT, haematoxylin-eosin staining and Masson's trichrome staining demonstrated that the modified Ti implants significantly promoted the formation of new bone tissue after implantation for 4 weeks. The present system paves the way for developing the next generation of implants with the functions of treating bacterial infection and promoting tissue regeneration.


Asunto(s)
Regeneración Ósea/efectos de los fármacos , Osteomielitis/microbiología , Poliaminas/administración & dosificación , Ácido Poliglutámico/administración & dosificación , Prótesis e Implantes/microbiología , Plata/química , Infecciones Estafilocócicas/tratamiento farmacológico , Animales , Antibacterianos/química , Materiales Biocompatibles Revestidos/química , Modelos Animales de Enfermedad , Nanopartículas del Metal , Pruebas de Sensibilidad Microbiana , Osteomielitis/tratamiento farmacológico , Poliaminas/química , Poliaminas/farmacología , Ácido Poliglutámico/química , Ácido Poliglutámico/farmacología , Ratas , Dióxido de Silicio/química , Staphylococcus aureus/efectos de los fármacos , Propiedades de Superficie , Titanio/química , Resultado del Tratamiento
3.
J Mater Chem B ; 7(15): 2534-2548, 2019 04 21.
Artículo en Inglés | MEDLINE | ID: mdl-32255130

RESUMEN

Bacterial infections at wound tissue sites usually delay the wound healing process and even result in severe life-threatening complications. Therefore, it is imperative to develop an efficient strategy to simultaneously enhance the antibacterial abilities and improve the wound healing process. Here, we report a composite hydrogel composed of methacrylate-modified gelatin (Gel-MA) and N,N-bis(acryloyl)cystamine (BACA)-chelated Cu nanoparticles (Cu NPs) via radical polymerization with a photoinitiator. The Cu NPs could effectively convert NIR laser irradiation (808 nm) energy into localized heat due to the localized surface plasmon resonance (LSPR) effect for effecting photothermal therapy. In vitro antimicrobial experiments revealed that the hybrid hydrogel exhibited predominant antibacterial efficacy against both Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria, while Cu-NP-embedded hydrogel + laser group exhibited superior antibacterial capacity. The excellent antibacterial properties can be attributed to the synergistic effect of photothermal performance and rapid release of copper ions (Cu2+) because of the laser irradiation of Cu NPs. Moreover, the released Cu2+ could stimulate NIH-3T3 fibroblast proliferation without any inflammatory responses. Moreover, chronic wound healing process of S. aureus-infected model was significantly accelerated with prominent antibacterial ability, reduced inflammatory response, and promoted angiogenesis ability in vivo. In summary, Cu-NP-embedded hydrogels are a promising candidate for skin tissue regeneration and potentially valuable for clinical applications.


Asunto(s)
Cobre/química , Hidrogeles/química , Hidrogeles/farmacología , Nanopartículas del Metal/química , Fototerapia/métodos , Cicatrización de Heridas/efectos de los fármacos , Animales , Antibacterianos/química , Antibacterianos/farmacología , Antibacterianos/uso terapéutico , Supervivencia Celular/efectos de los fármacos , Escherichia coli/efectos de los fármacos , Escherichia coli/metabolismo , Hidrogeles/uso terapéutico , Peroxidación de Lípido/efectos de los fármacos , Ratones , Células 3T3 NIH , Staphylococcus aureus/efectos de los fármacos , Staphylococcus aureus/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA