RESUMEN
Introduction: Idiopathic pulmonary fibrosis is a chronic interstitial lung disease characterized by excessive deposition of extracellular matrix. Cannabidiol, a natural component extracted from plant cannabis, has been shown to have therapeutic effects on lung diseases, but its exact mechanism of action is unknown, hindering its therapeutic effectiveness. Methods: To establish a pulmonary fibrosis model, combined with UPLC-Q-TOF/MS metabolomics and 16S rDNA sequencing, to explore cannabidiol's mechanism in treating pulmonary fibrosis. The rats were randomly divided into the control group, pulmonary fibrosis model group, prednisone treatment group, and cannabidiol low, medium, and high dose groups. The expression levels of HYP, SOD, and MDA in lung tissue and the expression levels of TNF-α, IL-1ß, and IL-6 in serum were detected. Intestinal microbiota was detected using UPLC-QTOF/MS analysis of metabolomic properties and 16S rDNA sequencing. Results: Pathological studies and biochemical indexes showed that cannabidiol treatment could significantly alleviate IPF symptoms, significantly reduce the levels of TNF-α, IL-1ß, IL-6, MDA, and HYP, and increase the expression level of SOD (p < 0.05). CBD-H can regulate Lachnospiraceae_NK4A136_group, Pseudomonas, Clostridia_UCG-014, Collinsella, Prevotella, [Eubacterium]_coprostanoligenes_group, Fusobacterium, Ruminococcus, and Streptococcus, it can restore intestinal microbiota function and reverse fecal metabolism trend. It also plays the role of fibrosis through the metabolism of linoleic acid, glycerol, linolenic acid, and sphingolipid. Discussion: Cannabidiol reverses intestinal microbiota imbalance and attenuates pulmonary fibrosis in rats through anti-inflammatory, antioxidant, and anti-fibrotic effects. This study lays the foundation for future research on the pathological mechanisms of IPF and the development of new drug candidates.
RESUMEN
Huangqi Chifeng Decoction (HQCFT), a traditional Chinese medicine preparation, has long been used to treat cardiovascular and cerebrovascular diseases. However, the mechanism of the beneficial effect of HQCFT on atherosclerosis remains to be explored. In this work, to investigate the effects of HQCFT on bile acid (BA) metabolism and the gut microbiome in atherosclerosis, ApoE-/- mice were fed a with high-fat diet for 16 weeks to establish the AS model. HQCFT(1.95 g kg-1 and 3.9 g kg-1 per day) was administered intragastrically for 8 weeks to investigate the regulatory effects of HQCFT on gut microbiota and bile acid metabolism and to inhibit the occurrence and development of AS induced by a high-fat diet. Histopathology, liver function and blood lipids were used to assess whether HQCFT can reduce plaque area, regulate lipid levels and alleviate liver steatosis in AS mice. In addition, 16S rDNA sequencing was used to screen the gut microbiota structure, and ultrahigh-performance liquid chromatography-tandem mass spectrometry (UPLCâMS/MS) was used to determine the bile acid profile. The mRNA and protein expression levels of bile acid metabolism were detected by RTâPCR and WB to find the potential correlation. Results: HQCFT can regulate gut microbiota disorders, which was achieved by increasing gut microbiota diversity and altering Proteobacteria, Desulfobacterota, Deferribacteres, Rodentibacter, Parasutterella, and Mucispirillum interference abundance to improve AS-induced gut microbiota. HQCFT can also adjust the content of bile acids (TCA, LCA, DCA, TDCA, TLCA, UDCA, etc.), regulate bile acid metabolism, relieve liver fat accumulation, and inhibit the process of AS. In addition, HQCFT can restore the abnormal metabolism of bile acid caused by AS by regulating the expression of farnesoid X receptor (FXR), liver X receptor α (LXRα), ABCA1, ABCG1 and CYP7A1. Conclusion: HQCFT may play a part in the prevention of atherosclerosis by inhibiting the FXR/LXRα axis, increasing the expression of CYP7A1 in the liver, and regulating the interaction between the gut microbiota and bile acid metabolism.
RESUMEN
Background: Zhijing Powder (ZJP) is a traditional Chinese medicine containing two kinds of Chinese medicine. Those studies analyze the molecular mechanism of ZJP in treating hypertension through network pharmacology, combined with animal experiments. Methods: First, the effective ingredients and potential targets of the drug were obtained through drug databases, while the targets of disease obtained through disease target databases. The potential targets, cellular bioanalysis and signaling pathways were found in some platforms by analyzing collected targets. Further experiments were conducted to verify the effect and mechanism of drugs on cold and high salt in an induced-hypertension rat model. Results: There are 17 effective components of centipedes and 10 of scorpions, with 464 drug targets obtained after screening. A total of 1263 hypertension targets were obtained after screening and integration, resulting in a protein-protein interaction network (PPI) with 145 points and 1310 edges. Gene ontology (GO) analysis shows that blood circulation regulation and activation of G protein-coupled receptors are mainly biological processes. The Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis shows that neuroactive ligand-receptor interaction, calcium signaling pathways, PI3K-AKT signaling pathways are the most abundant gene-enriched pathway. Animal experiments indicated that ZJP can reduce blood pressure (BP), affect expression of the PI3K-AKT signaling pathway, and improve oxidative stress in the body. Conclusion: ZJP ameliorates oxidative stress and reduces BP in hypertensive rats caused by cold stimuli and high salt, revealing its effect on the expression of the PI3K/AKT signaling pathway in the rat aorta.
RESUMEN
This work aims to combine network pharmacology and metabolomics to explore the mechanism of action of dioscin on hyperuricemia (HUA). The preventative impact of dioscin on HUA and its putative mechanism were examined using network pharmacological analysis and metabonomics. Network pharmacology study further pointed out the potential targets of dioscin after a review of the relevant biomarker pathways discovered by metabolomic analysis. Molecular docking was then used to examine how the active chemicals interacted with the target proteins. The therapeutic effect of dioscin on HUA was shown to be mediated by 13 potentially important metabolites as a result of metabonomic research. Most of these metabolites are regulated after dioscin therapy to help patients recover. Based on network pharmacology, we identified 10 central genes, which is partly in agreement with metabolomics data. Using metabolomics and network pharmacology, this study investigated the primary targets and mechanisms of dioscin in the treatment of HUA. It is advantageous that dioscin has been developed as an additional drug for the treatment of HUA.
Asunto(s)
Medicamentos Herbarios Chinos , Hiperuricemia , Humanos , Hiperuricemia/tratamiento farmacológico , Simulación del Acoplamiento Molecular , Farmacología en Red , Metabolómica , Medicamentos Herbarios Chinos/farmacologíaRESUMEN
Gedan Jiangya Decoction (GJD), a Chinese herbal medicine composed of six botanical medicines, was designed to treat hypertension (patent published number (CN114246896A)). The overexpression of the ERK (extracellular signal-regulated kinase) signaling pathway is essential in developing left ventricular hypertrophy (LVH). This study aimed to evaluate GJD's effects on LVH in spontaneously hypertensive rats (SHRs) and examine its potential mechanisms on Ras/ERK1/2 pathway regulation. Thirty-five ten-week-old SHRs were randomly assigned to one of five groups: GJD low dosage, medium dose, high dose, model, and captopril. Wistar-Kyoto (WKY) rats served as the control group. All rats received a 6-week treatment. The following parameters were measured: systolic (SBP) and diastolic blood pressure (DBP), left ventricular mass index (LVMI), and serum TGF-beta1. The pathologic structure was determined by H & E staining and Masson. TGF-beta1, Ras, ERK1/2, and C-Fos levels were determined using western blotting and real-time qPCR. SBP, DBP, and LVMI were reduced significantly in the GJD group compared with the model group. GJD inhibited TGF-beta1, Ras, ERK1/2, and C-Fos expression in LVH. In conclusion, GJD reduced the Ras/ERK1/2 pathway expression, which decreased hypertension-induced heart hypertrophy. GJD may protect hypertension-induced myocardial hypertrophy by altering gene expression patterns in the heart.
RESUMEN
Primary hypertension is understood as a disease with diverse etiology, a complicated pathological mechanism, and progressive changes. Gedan Jiangya Decoction (GJD), with the patent publication number CN114246896A, was designed to treat primary hypertension. It contains six botanical drugs; however, the underlying mechanism is uncertain. We utilized network pharmacology to predict the active components, targets, and signaling pathways of GJD in the treatment of primary hypertension. We also investigated the potential molecular mechanism using molecular docking and animal experiments. The Traditional Chinese Medicine System Pharmacology Database and Analysis Platform (TCMSP), the Protein Database (UniProt), and a literature review were used to identify the active components and related targets of GJD's pharmacological effects. The GeneCards, Online Mendelian Inheritance in Man (OMIM), Therapeutic Target Database (TTD), and DrugBank databases were utilized to identify hypertension-related targets. Based on a Venn diagram of designed intersection targets, 214 intersection targets were obtained and 35 key targets for the treatment of hypertension were determined using the STRING data platform and Cytoscape software. The Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analysis of key targets revealed that the relevant molecular action pathways of GJD in the treatment of hypertension include the Toll-like receptor, MAPK, PI3K-Akt, and renin-angiotensin signaling pathways. A GJD active ingredient-key target-pathway connection diagram was created using Cytoscape software, and 11 essential active components were selected. Molecular docking was then used to verify the binding activity of key targets and key active ingredients in GJD to treat primary hypertension. The results of this study indicate that AGTR1, AKT1 with puerarin, EDNRA with tanshinone IIA, MAPK14 with daidzein, MAPK8 with ursolic acid, and CHRM2 with cryptotanshinone had high binding activity to the targets with active components, whereas AGTR1 was selected as target genes verified by our experiment. HPLC was utilized to identify the five active ingredients. Experiments in high-salt rats demonstrated that GJD might decrease the expression of AGTR1 in the kidney and thoracic aorta while increasing the expression of eNOS by preventing the activation of the renin-angiotensin pathway, thereby reducing lowering systolic and diastolic blood pressure.
Asunto(s)
Medicamentos Herbarios Chinos , Hipertensión , Angiotensinas/uso terapéutico , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Humanos , Hipertensión/tratamiento farmacológico , Medicina Tradicional China , Simulación del Acoplamiento Molecular , Farmacología en Red , Fosfatidilinositol 3-Quinasas , Ratas , ReninaRESUMEN
This study aims to investigate the effect of modified Danggui Shaoyao Powder on the suppressor of cytokine signaling 3(SOCS3)/Toll-like receptor 4(TLR4) signaling pathway in gastric tissue of rats with chronic atrophic gastritis(CAG).Sixty SPF-grade SD rats were randomly assigned into the normal group, model group, Moluo Pills group, and high-, medium-, and low-dose groups of modified Danggui Shaoyao Powder.The rats in other groups except the normal group were treated with N-methyl-N'-nitro-N-nitrosoguanidine(MNNG) to establish the CAG model.After 12 weeks of modeling, the rats in each group were administrated with corresponding drugs by gavage for 8 weeks.After the last administration, the histopathological changes of rat gastric mucosa were observed via hematoxylin-eosin(HE) staining.The serum levels of IL-6, TNF-α, and CRP were determined by enzyme-linked immunosorbent assay(ELISA).The mRNA levels of SOCS3 and TLR4 were determined by real-time PCR.The protein levels of SOCS3, TLR4, JAK2, p-JAK2, STAT3, and p-STAT3 in rat gastric tissue were measured by Western blot.Immunohistochemical method was employed to determine the protein levels of NF-κB, MyD88, NLRP3, Bcl-2, Bax, and Bad in rat gastric tissue.The results showed that modified Danggui Shaoyao Powder alleviated gastric mucosal atrophy of rats, significantly lowered the levels of IL-6, TNF-α, and CRP in rat serum, up-regulated the mRNA level of SOCS3, and down-regulated the mRNA level of TLR4 in rat gastric tissue.Furthermore, modified Danggui Shaoyao Powder up-regulated the protein level of SOCS3, down-regulated the protein levels of TLR4, p-JAK2, p-STAT3, NF-κB, MyD88, NLRP3, Bax, and Bad, and promoted the expression of Bcl-2 protein.Therefore, modified Danggui Shaoyao Powder may mitigate the gastric mucosal atrophy of rats by regulating the SOCS3/TLR4 signaling pathway.
Asunto(s)
Gastritis Atrófica , Receptor Toll-Like 4 , Animales , Atrofia , Gastritis Atrófica/tratamiento farmacológico , Gastritis Atrófica/genética , Interleucina-6/metabolismo , Factor 88 de Diferenciación Mieloide/genética , Factor 88 de Diferenciación Mieloide/metabolismo , FN-kappa B/genética , FN-kappa B/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Polvos , ARN Mensajero , Ratas , Ratas Sprague-Dawley , Transducción de Señal , Proteína 3 Supresora de la Señalización de Citocinas/genética , Proteína 3 Supresora de la Señalización de Citocinas/metabolismo , Receptor Toll-Like 4/genética , Receptor Toll-Like 4/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo , Proteína X Asociada a bcl-2/metabolismoRESUMEN
Gedan Jiangya decoction (GJD) (aqueous ethanol extract), a traditional Chinese medicine formula which contain six botanical drugs (Uncaria rhynchophylla (Miq.) Miq., Salvia miltiorrhiza Bunge, Pueraria lobata (Willd.) Ohwi, Eucommia ulmoides Oliv., Prunella vulgaris L., and Achyranthes bidentata Blume) was designed to treat hypertension; however, the underlying mechanism of action is unclear. This study aimed to determine the mechanisms of action of GJD in the treatment of hypertension in spontaneously hypertensive rats (SHR). Male SHRs were randomly divided into five groups: GJD doses were low (1.36 g/kg/d), medium (2.72 g/kg/d), and high (5.44 g/kg/d), captopril (13.5 mg/kg/d), and SHR groups, with Wistar-Kyoto rats (WKY) serving as the control. Every rat was gavaged once a day. The ALC-NIBP, a noninvasive blood pressure device, measured systolic (SBP) and diastolic (DBP) blood pressures. Six weeks following treatment, all rats were anesthetized. The blood samples were obtained from the abdominal aorta and then serum isolated to assess endothelin-1 and angiotensin II, interleukin-1beta, interleukin-6, and TNF-alpha. The left ventricular and thoracic aortas were taken for HE staining, immunohistochemistry, RT-qPCR, and western blot examination. Following GJD therapy, SBP and DBP were significantly lowered, as were serum levels of endothelin-1 and angiotensin II. The thickness of the left ventricular and thoracic aorta walls reduced, as did type I collagen, type III collagen, and alpha-SMA expression in the left ventricular and aortic tissues. The GJD treatment significantly reduced serum levels of the inflammatory markers interleukin-1beta, interleukin-6, and TNF-alpha. Furthermore, interleukin-1 beta, interleukin-6, TNF-alpha, TAK1, and NF-κB/p65 levels were significantly reduced in left ventricular and aortic tissues, whereas IkB-alpha levels were significantly elevated. GJD has a dose-dependent effect on all parameters. In conclusion, GJD has been shown to lower blood pressure, improve cardiovascular remodeling, and reduce inflammation via regulating NF-κB in SHRs.
Asunto(s)
Angiotensina II , Hipertensión , Angiotensina II/farmacología , Animales , Antihipertensivos/farmacología , Antihipertensivos/uso terapéutico , Presión Sanguínea , Captopril/farmacología , Captopril/uso terapéutico , Colágeno Tipo III , Endotelina-1/farmacología , Etanol , Inflamación/tratamiento farmacológico , Interleucina-1beta/farmacología , Interleucina-6/farmacología , Masculino , FN-kappa B , Ratas , Ratas Endogámicas SHR , Ratas Endogámicas WKY , Factor de Necrosis Tumoral alfa/farmacología , UncariaRESUMEN
Liver fibrosis is a pathological process of abnormal tissue proliferation in the liver caused by various pathogenic factors, which will further develop into cirrhosis or even hepatocellular carcinoma if liver injury is not intervened in time. As a diffuse progressive liver disease, its clinical manifestations are mostly excessive deposition of collagen-rich extracellular matrix resulting in scar formation due to liver injury. Hepatic fibrosis can be caused by hepatitis B and C, fatty liver, alcohol, and rare diseases such as hemochromatosis. As the metabolic center of the body, the liver regulates various vital activities. During the development of fibrosis, it is influenced by many other factors in addition to the central event of hepatic stellate cell activation. Currently, with the increasing understanding of TCM, the advantages of TCM with multiple components, pathways, and targets have been demonstrated. In this review, we will describe the factors influencing liver fibrosis, focusing on the effects of cells, intestinal flora, iron death, signaling pathways, autophagy and angiogenesis on liver fibrosis, and the therapeutic effects of herbal medicine on liver fibrosis.
RESUMEN
The transmembrane member 16A (TMEM16A)-encoded Ca2+-activated Cl- channel (CaCC) is expressed in interstitial cells of Cajal (ICCs) and involved in the generation of the slow-wave currents of gastrointestinal (GI) smooth muscles. TMEM16A modulators have been shown to positively or negatively regulate the contraction of gastrointestinal smooth muscle. Therefore, targeting the pharmacological modulation of TMEM16A may represent a novel treatment approach for gastrointestinal dysfunctions such as constipation and diarrhoea. In this study, evodiamine and rutecarpine were extracted from the traditional Chinese medicine Evodia rutaecarpa and identified as novel TMEM16A inhibitors with comparable inhibitory effects. Their effects on intestinal peristalsis were examined. Whole-cell patch clamp results show that evodiamine and rutecarpine inhibited TMEM16A Cl- currents in CHO cells. The half-maximal inhibition values (IC50) of evodiamine and rutecarpine on TMEM16A Cl- currents were 11.8 ± 1.3 µΜ and 9.2 ± 0.4 µM, and the maximal effect values (Emax) were 95.8 ± 5.1% and 99.1 ± 1.6%, respectively. The Lys384, Thr385, and Met524 in TMEM16A are critical for evodiamine and rutecarpine's inhibitory effects. Further functional studies show that both evodiamine and rutecarpine can significantly suppress the peristalsis in isolated guinea-pig ileum. These findings demonstrate that evodiamine and rutecarpine are new TMEM16A inhibitors and support the regulation effect of TMEM16A modulators on gastrointestinal motility.
Asunto(s)
Alcaloides Indólicos , Quinazolinas , Animales , Cricetulus , Cobayas , Células Intersticiales de Cajal/efectos de los fármacos , PeristaltismoRESUMEN
We have previously demonstrated that selenium nanoparticles (SeNPs) administered via oral route possess similar capacities of increasing selenoenzyme activities as the extensively examined sodium selenite, selenomethionine and methylselenocysteine, and yet display the lowest toxicity among these selenium compounds in mouse models. However, the low toxicity of SeNPs found in mammalian systems would lead to the interpretation that the punctate distribution of elemental selenium found in cultured cancer cells subjected to selenite treatment that triggers marked cytotoxicity represents a detoxifying mechanism. The present study found that SeNPs could be reduced by the thioredoxin- or glutaredoxin-coupled glutathione system to generate ROS. Importantly, ROS production by SeNPs in these systems was more efficient than by selenite, which has been recognized as the most redox-active selenium compound for ROS production. This is because multiple steps of reduction from selenite to selenide anion are required; whereas only a single step reduction from the elemental selenium atom to selenide anion is needed to trigger redox cycling with oxygen to produce ROS. We thus speculated that accumulation of SeNPs in cancer cells would result in a strong therapeutic effect, rather than serves a detoxification function. Indeed, we showed herein that preformed SeNPs generated a potent therapeutic effect in a mouse model due to rapid, massive and selective accumulation of SeNPs in cancer cells. Overall, for the first time, we demonstrate that SeNPs have a stronger pro-oxidant property than selenite and hyper-accumulation of SeNPs in cancer cells can generate potent therapeutic effects.
Asunto(s)
Nanopartículas del Metal/administración & dosificación , Neoplasias/tratamiento farmacológico , Selenio/administración & dosificación , Selenito de Sodio/administración & dosificación , Animales , Línea Celular Tumoral , Glutatión/metabolismo , Humanos , Nanopartículas del Metal/efectos adversos , Ratones , Neoplasias/patología , Oxidación-Reducción/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Selenio/efectos adversos , Selenito de Sodio/efectos adversosRESUMEN
Selenium participates in the antioxidant defense mainly through a class of selenoproteins, including thioredoxin reductase. Epigallocatechin-3-gallate (EGCG) is the most abundant and biologically active catechin in green tea. Depending upon the dose and biological systems, EGCG may function either as an antioxidant or as an inducer of antioxidant defense via its pro-oxidant action or other unidentified mechanisms. By manipulating the selenium status, the present study investigated the interactions of EGCG with antioxidant defense systems including the thioredoxin system comprising of thioredoxin and thioredoxin reductase, the glutathione system comprising of glutathione and glutathione reductase coupled with glutaredoxin, and the Nrf2 system. In selenium-optimal mice, EGCG increased hepatic activities of thioredoxin reductase, glutathione reductase and glutaredoxin. These effects of EGCG appeared to be not due to overt pro-oxidant action because melatonin, a powerful antioxidant, did not influence the increase. However, in selenium-deficient mice, with low basal levels of thioredoxin reductase 1, the same dose of EGCG did not elevate the above-mentioned enzymes; intriguingly EGCG in turn activated hepatic Nrf2 response, leading to increased heme oxygenase 1 and NAD(P)H:quinone oxidoreductase 1 protein levels and thioredoxin activity. Overall, the present work reveals that EGCG is a robust inducer of the Nrf2 system only in selenium-deficient conditions. Under normal physiological conditions, in selenium-optimal mice, thioredoxin and glutathione systems serve as the first line defense systems against the stress induced by high doses of EGCG, sparing the activation of the Nrf2 system.
Asunto(s)
Antioxidantes/administración & dosificación , Catequina/análogos & derivados , Glutatión Reductasa/metabolismo , Factor 2 Relacionado con NF-E2/metabolismo , Selenio/metabolismo , Reductasa de Tiorredoxina-Disulfuro/metabolismo , Animales , Antioxidantes/farmacología , Catequina/administración & dosificación , Catequina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Glutarredoxinas/metabolismo , Glutatión/metabolismo , Glutatión Reductasa/genética , Ratones , Factor 2 Relacionado con NF-E2/genética , Especies Reactivas de Oxígeno/metabolismo , Selenio/deficiencia , Transducción de Señal/efectos de los fármacos , Reductasa de Tiorredoxina-Disulfuro/genética , Tiorredoxinas/metabolismoRESUMEN
(-)-Epigallocatechin-3-gallate (EGCG) from green tea has anti-cancer effect. The cytotoxic actions of EGCG are associated with its auto-oxidation, leading to the production of hydrogen peroxide and formation of numerous EGCG auto-oxidation products (EAOPs), the structures and bioactivities of them remain largely unclear. In the present study, we compared several fundamental properties of EGCG and EAOPs, which were prepared using 5mg/mL EGCG dissolved in 200mM phosphate buffered saline (pH 8.0 at 37°C) and normal oxygen partial pressure for different periods of time. Despite the complete disappearance of EGCG after the 4-h auto-oxidation, 4-h EAOPs gained an enhanced capacity to deplete cysteine thiol groups, and retained the cytotoxic effects of EGCG as well as the capacity to produce hydrogen peroxide and inhibit thioredoxin reductase, a putative target for cancer prevention and treatment. The results indicate that certain EAOPs possess equivalent cytotoxic activities to EGCG, while exhibiting simultaneously enhanced capacity for cysteine depletion. These results imply that EGCG and EAOPs formed extracellularly function in concert to exhibit cytotoxic effects, which previously have been ascribed to EGCG alone.
Asunto(s)
Anticarcinógenos/química , Camellia sinensis/química , Catequina/análogos & derivados , Animales , Anticarcinógenos/farmacología , Catequina/química , Catequina/farmacología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Cromatografía Líquida de Alta Presión , Cisteína/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Peróxido de Hidrógeno/análisis , Ratones , Oxidación-Reducción , Hojas de la Planta/química , Té/química , Reductasa de Tiorredoxina-Disulfuro/antagonistas & inhibidoresRESUMEN
Forsythia suspensa (Thunb.) Vahl leaves have been consumed in China as a health-promoting functional tea for centuries. Three new polyhydroxytriterpenoid glycosides named suspensanosides A-C (1-3), seven known polyhydroxytriterpenoids (4-10), and 12 known phenolics (11-22) were identified from F. suspensa leaves. Compounds 1-10, 15-17, and 22 have not been found in the Forsythia genus previously, whereas compound 14 was first reported to be isolated from the leaves of F. suspensa. All isolates were tested for their antiproliferative activities on BGC-823 and MCF-7 human tumor cell lines, whereas all phenolics were further investigated for their antioxidant activities by a DPPH assay. The results clearly demonstrate that triterpenoids, especially ursane-type triterpenoids, and the diverse phenolic components are crucial for the beneficial effects of F. suspensa leaves.
Asunto(s)
Medicamentos Herbarios Chinos/química , Forsythia/química , Fenoles/química , Hojas de la Planta/química , Terpenos/química , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Medicamentos Herbarios Chinos/farmacología , Humanos , Estructura Molecular , Fenoles/farmacología , Terpenos/farmacologíaRESUMEN
Increased dietary consumption of docosahexaenoic acid (DHA) is associated with decreased risk for Alzheimer's disease (AD). These effects have been postulated to arise from DHA's pleiotropic effects on AD pathophysiology, including its effects on ß-amyloid (Aß) production, aggregation, and toxicity. While in vitro studies suggest that DHA may inhibit and reverse the formation of toxic Aß oligomers, it remains uncertain whether these mechanisms operate in vivo at the physiological concentrations of DHA attainable through dietary supplementation. We sought to clarify the effects of dietary DHA supplementation on Aß indices in a transgenic APP/PS1 rat model of AD. Animals maintained on a DHA-supplemented diet exhibited reductions in hippocampal Aß plaque density and modest improvements on behavioral testing relative to those maintained on a DHA-depleted diet. However, DHA supplementation also increased overall soluble Aß oligomer levels in the hippocampus. Further quantification of specific conformational populations of Aß oligomers indicated that DHA supplementation increased fibrillar (i.e. putatively less toxic) Aß oligomers and decreased prefibrillar (i.e. putatively more toxic) Aß oligomers. These results provide in vivo evidence suggesting that DHA can modulate Aß aggregation by stabilizing soluble fibrillar Aß oligomers and thus reduce the formation of both Aß plaques and prefibrillar Aß oligomers. However, since fibrillar Aß oligomers still retain inherent neurotoxicity, DHA may need to be combined with other interventions that can additionally reduce fibrillar Aß oligomer levels for more effective prevention of AD in clinical settings.
Asunto(s)
Enfermedad de Alzheimer/dietoterapia , Péptidos beta-Amiloides/metabolismo , Suplementos Dietéticos , Ácidos Docosahexaenoicos , Hipocampo/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/dietoterapia , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/patología , Enfermedad de Alzheimer/psicología , Precursor de Proteína beta-Amiloide/genética , Precursor de Proteína beta-Amiloide/metabolismo , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/patología , Humanos , Masculino , Aprendizaje por Laberinto , Placa Amiloide/metabolismo , Placa Amiloide/patología , Placa Amiloide/psicología , Presenilina-1/genética , Presenilina-1/metabolismo , Multimerización de Proteína , Ratas Sprague-Dawley , Ratas Transgénicas , Resultado del TratamientoRESUMEN
Elemental selenium nanoparticles (SeNPs) have been demonstrated to be equivalent to selenomethionine and methylselenocysteine in upregulating selenoenzymes; however, the toxicity of SeNPs is markedly lower than these two organic selenium compounds. The objective of this study was to determine the effect of SeNP size on cancer cell growth and ascertain whether production of reactive oxygen species (ROS) is implicated as a candidate mechanism of action. Two types of SeNPs (averaging 35 nm and 91 nm) were investigated. Cell accumulation was inhibited in vitro and in vivo in a manner inversely proportional to particle size. In vitro modeling experiments showed the reduction of SeNPs to be glutathione concentration dependent and to result in ROS formation. Both SeNP biotransformation and ROS production were size dependent, with the smaller SeNPs being more active, thereby suggesting that small-sized SeNPs are more effective in inhibiting cancer cell proliferation through an ROS mediated mechanism.
Asunto(s)
Antineoplásicos/uso terapéutico , Carcinoma/tratamiento farmacológico , Neoplasias Hepáticas/tratamiento farmacológico , Nanopartículas/uso terapéutico , Estrés Oxidativo/efectos de los fármacos , Selenio/uso terapéutico , Absorción Fisiológica , Animales , Animales no Consanguíneos , Antineoplásicos/química , Antineoplásicos/metabolismo , Biomarcadores/química , Biomarcadores/metabolismo , Carcinoma/metabolismo , Carcinoma/patología , Carcinoma de Células Escamosas/tratamiento farmacológico , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patología , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Glutatión/antagonistas & inhibidores , Glutatión/metabolismo , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Masculino , Ratones , Nanopartículas/química , Nanopartículas/metabolismo , Nanopartículas/ultraestructura , Trasplante de Neoplasias , Oxidación-Reducción , Tamaño de la Partícula , Especies Reactivas de Oxígeno/agonistas , Especies Reactivas de Oxígeno/metabolismo , Selenio/química , Selenio/metabolismoRESUMEN
OBJECTIVE: To study metabolic characteristics of fever in rats induced by 2, 4-dinitrophenol (DNP) and the effect of Huanglianjiedu Tang (HLJDT) on the fever. METHODS: The urine samples were analyzed by ultra-performance liquid chromatography/electrospray ionization quadruple time-of-flight mass spectrometry (UPLC/ESI-Q-TOF-MS) at the positive ion mode scanning, and experimental data were analyzed by the principal component analysis. RESULTS: Eight potential biomarkers indicating the occurrence and evolvement of fever were determined according to ions in urine samples. Five of them were found increased, while the other three decreased. After HLJDD intervention, the increased five were reduced significantly in high dose group, compared with model group, while the decreased three had no obvious change. Five of the eight biomakers were identified with formyl-5-hydroxykynurenamine, gentisic acid, aminoadipic acid, phenylacetic acid, L-phenylalanyl-L-hydroxyproline on the basis of MS/MS. These biomarkers are associated with the metabolism of 5-hydroxytryptamine, tyrosine, lysine, phenylalanine and collagen protein, respectively. CONCLUSION: HLJDT had significant effect on DNP-induced fever in rats. The effect was performed possibly by acting on 5-hydroxytryptamine in hypothalamus and some amino acid metabolism. These results suggested that HLJDT relieved fever by acting on multi-targets.
Asunto(s)
Dinitrofenoles/efectos adversos , Medicamentos Herbarios Chinos/administración & dosificación , Fiebre/tratamiento farmacológico , Administración Oral , Animales , Biomarcadores/orina , Cromatografía Líquida de Alta Presión , Fiebre/etiología , Fiebre/orina , Humanos , Masculino , Metabolómica , Ratas , Ratas Wistar , Espectrometría de Masas en TándemRESUMEN
This study describes the metabonomics of fevers in animal models and the therapeutic effects of Rhizoma coptidis extract (RCE) on them. The rat urinary samples were analyzed by UPLC/ ESI-Q-TOF/MS, combined with principal component analysis (PCA). Nine ions were chosen to characterize the similarities and differences in the responses to fever. The ion at m/z 206.0278 was unambiguously identified to be xanthurenic acid. This study demonstrated that the metabonomic approach can readily distinguish between febrile and healthy individuals. This data support the contention that the metabonomic approach represents a promising new technology for the development of rapid-throughput in vivo fever screening. Furthermore, this approach can detect the interfering effects of RCE. This investigation has led the authors to believe that metabonomics is a valid approach for explaining the therapeutic effects of traditional Chinese medicine on fevers.
Asunto(s)
Antipiréticos/uso terapéutico , Coptis , Medicamentos Herbarios Chinos/uso terapéutico , Fiebre/orina , Fitoterapia , Xanturenatos/orina , 2,4-Dinitrofenol , Animales , Biomarcadores/orina , Modelos Animales de Enfermedad , Fiebre/inducido químicamente , Fiebre/tratamiento farmacológico , Metabolómica/métodos , Análisis de Componente Principal , Ratas , Ratas Wistar , RizomaRESUMEN
The mesaconitine and its major metabolites in the rat urine were identified by liquid chromatography and electrospray ionization tandem mass spectrometry. The rat urine was collected for consecutive 24 hours from the rat following intragastric infusion of mesaconitine, subsequently which were enriched and purified using solid phase extraction. The metabolites of mesaconitine in the rat urine were analyzed by the liquid chromatography and electrospray ionization tandem mass spectrometry. It is shown that the parent drug mesaconitine and its metabolites were found in the rat urine, such as hypo-mesaconitine glucuronic acid conjugate, 10-hydroxy-mesaconitine, 1-O-demethyl mesaconitine, deoxy-mesaconitine and hypo-mesaconitine. Among the five of metabolites, the hypo-mesaconitine glucuronic acid conjugate (m/z 766) was first discovered as the aconitine in rats phase II metabolites, which revealed a new way of mesaconitine metabolism in rats.