RESUMEN
The Membrane Attack Complex and Perforin (MACPF) proteins play a crucial role in plant development and adaptation to environmental stresses. Heretofore, few MACPF genes have been functionally identified, leaving gaps in our understanding of MACPF genes in other plants, particularly in the Solanaceae family, which includes economically and culturally significant species, such as tomato, potato, and pepper. In this study, we have identified 26 MACPF genes in three Solanaceae species and in the water lily, which serves as the base group for angiosperms. Phylogenetic analysis indicates that angiosperm MACPF genes could be categorized into three distinct groups, with another moss and spikemoss lineage-specific group, which is further supported by the examination of gene structures and domain or motif organizations. Through inter-genome collinearity analysis, it is determined that there are 12 orthologous SolMACPF gene pairs. The expansion of SolMACPF genes is primarily attributed to dispersed duplications, with purifying selection identified as the principal driving force in their evolutionary process, as indicated by the ω values. Furthermore, the analysis of expression patterns revealed that Solanaceae genes are preferentially expressed in reproductive tissues and regulated by various environmental stimuli, particularly induced by submergence. Taken together, these findings offer valuable insights into and a fresh perspective on the evolution and function of SolMACPF genes, thereby establishing a foundation for further investigations into their phenotypic and functional characteristics.
Asunto(s)
Magnoliopsida , Solanum tuberosum , Perforina/genética , Complejo de Ataque a Membrana del Sistema Complemento , Filogenia , VerdurasRESUMEN
Meprin and TRAF homology (MATH)-domain-containing proteins are pivotal in modulating plant development and environmental stress responses. To date, members of the MATH gene family have been identified only in a few plant species, including Arabidopsis thaliana, Brassica rapa, maize, and rice, and the functions of this gene family in other economically important crops, especially the Solanaceae family, remain unclear. The present study identified and analyzed 58 MATH genes from three Solanaceae species, including tomato (Solanum lycopersicum), potato (Solanum tuberosum), and pepper (Capsicum annuum). Phylogenetic analysis and domain organization classified these MATH genes into four groups, consistent with those based on motif organization and gene structure. Synteny analysis found that segmental and tandem duplication might have contributed to MATH gene expansion in the tomato and the potato, respectively. Collinearity analysis revealed high conservation among Solanaceae MATH genes. Further cis-regulatory element prediction and gene expression analysis showed that Solanaceae MATH genes play essential roles during development and stress response. These findings provide a theoretical basis for other functional studies on Solanaceae MATH genes.