Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Genome Biol ; 25(1): 61, 2024 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-38414075

RESUMEN

BACKGROUND: Tartary buckwheat, Fagopyrum tataricum, is a pseudocereal crop with worldwide distribution and high nutritional value. However, the origin and domestication history of this crop remain to be elucidated. RESULTS: Here, by analyzing the population genomics of 567 accessions collected worldwide and reviewing historical documents, we find that Tartary buckwheat originated in the Himalayan region and then spread southwest possibly along with the migration of the Yi people, a minority in Southwestern China that has a long history of planting Tartary buckwheat. Along with the expansion of the Mongol Empire, Tartary buckwheat dispersed to Europe and ultimately to the rest of the world. The different natural growth environments resulted in adaptation, especially significant differences in salt tolerance between northern and southern Chinese Tartary buckwheat populations. By scanning for selective sweeps and using a genome-wide association study, we identify genes responsible for Tartary buckwheat domestication and differentiation, which we then experimentally validate. Comparative genomics and QTL analysis further shed light on the genetic foundation of the easily dehulled trait in a particular variety that was artificially selected by the Wa people, a minority group in Southwestern China known for cultivating Tartary buckwheat specifically for steaming as a staple food to prevent lysine deficiency. CONCLUSIONS: This study provides both comprehensive insights into the origin and domestication of, and a foundation for molecular breeding for, Tartary buckwheat.


Asunto(s)
Fagopyrum , Domesticación , Fagopyrum/genética , Perfilación de la Expresión Génica , Estudio de Asociación del Genoma Completo , Genómica , Filogenia
2.
Int J Mol Sci ; 24(24)2023 Dec 11.
Artículo en Inglés | MEDLINE | ID: mdl-38139196

RESUMEN

Tartary buckwheat (Fagopyrum tataricum) is an important plant, utilized for both medicine and food. It has become a current research hotspot due to its rich content of flavonoids, which are beneficial for human health. Anthocyanins (ATs) and proanthocyanidins (PAs) are the two main kinds of flavonoid compounds in Tartary buckwheat, which participate in the pigmentation of some tissue as well as rendering resistance to many biotic and abiotic stresses. Additionally, Tartary buckwheat anthocyanins and PAs have many health benefits for humans and the plant itself. However, little is known about the regulation mechanism of the biosynthesis of anthocyanin and PA in Tartary buckwheat. In the present study, a bHLH transcription factor (TF) FtTT8 was characterized to be homologous with AtTT8 and phylogenetically close to bHLH proteins from other plant species. Subcellular location and yeast two-hybrid assays suggested that FtTT8 locates in the nucleus and plays a role as a transcription factor. Complementation analysis in Arabidopsis tt8 mutant showed that FtTT8 could not recover anthocyanin deficiency but could promote PAs accumulation. Overexpression of FtTT8 in red-flowering tobacco showed that FtTT8 inhibits anthocyanin biosynthesis and accelerates proanthocyanidin biosynthesis. QRT-PCR and yeast one-hybrid assay revealed that FtTT8 might bind to the promoter of NtUFGT and suppress its expression, while binding to the promoter of NtLAR and upregulating its expression in K326 tobacco. This displayed the bidirectional regulating function of FtTT8 that negatively regulates anthocyanin biosynthesis and positively regulates proanthocyanidin biosynthesis. The results provide new insights on TT8 in Tartary buckwheat, which is inconsistent with TT8 from other plant species, and FtTT8 might be a high-quality gene resource for Tartary buckwheat breeding.


Asunto(s)
Arabidopsis , Fagopyrum , Proantocianidinas , Humanos , Antocianinas/metabolismo , Proantocianidinas/metabolismo , Fagopyrum/genética , Fagopyrum/metabolismo , Proteínas de Plantas/metabolismo , Filogenia , Fitomejoramiento , Flavonoides/metabolismo , Plantas/metabolismo , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/genética , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico/metabolismo , Arabidopsis/genética
3.
BMC Plant Biol ; 23(1): 58, 2023 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-36703107

RESUMEN

BACKGROUND: Grain weight/size influences not only grain yield (GY) but also nutritional and appearance quality and consumer preference in Tartary buckwheat. The identification of quantitative trait loci (QTLs)/genes for grain weight/size is an important objective of Tartary buckwheat genetic research and breeding programs. RESULTS: Herein, we mapped the QTLs for GY, 1000-grain weight (TGW), grain length (GL), grain width (GW) and grain length-width ratio (L/W) in four environments using 221 recombinant inbred lines (XJ-RILs) derived from a cross of 'Xiaomiqiao × Jinqiaomai 2'. In total, 32 QTLs, including 7 for GY, 5 for TGW, 6 for GL, 11 for GW and 3 for L/W, were detected and distributed in 24 genomic regions. Two QTL clusters, qClu-1-3 and qClu-1-5, located on chromosome Ft1, were revealed to harbour 7 stable major QTLs for GY (qGY1.2), TGW (qTGW1.2), GL (qGL1.1 and qGL1.4), GW (qGW1.7 and qGW1.10) and L/W (qL/W1.2) repeatedly detected in three and above environments. A total of 59 homologues of 27 known plant grain weight/size genes were found within the physical intervals of qClu-1-3 and qClu-1-5. Six homologues, FtBRI1, FtAGB1, FtTGW6, FtMADS1, FtMKK4 and FtANT, were identified with both non-synonymous SNP/InDel variations and significantly differential expression levels between the two parents, which may play important roles in Tatary buckwheat grain weight/size control and were chosen as core candidate genes for further investigation. CONCLUSIONS: Two stable major QTL clusters related to grain weight/size and six potential key candidate genes were identified by homology comparison, SNP/InDel variations and qRT‒qPCR analysis between the two parents. Our research provides valuable information for improving grain weight/size and yield in Tartary buckwheat breeding.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Fitomejoramiento , Mapeo Cromosómico , Sitios de Carácter Cuantitativo/genética , Grano Comestible/genética , Estudios de Asociación Genética , Fenotipo
4.
Int J Mol Sci ; 23(24)2022 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-36555415

RESUMEN

Starch is a major component of crop grains, and its content affects food quality and taste. Tartary buckwheat is a traditional pseudo-cereal used in food as well as medicine. Starch content, granule morphology, and physicochemical properties have been extensively studied in Tartary buckwheat. However, the complex regulatory network related to its starch biosynthesis needs to be elucidated. Here, we performed RNA-seq analyses using seven Tartary buckwheat varieties differing in starch content and combined the RNA-seq data with starch content by weighted correlation network analysis (WGCNA). As a result, 10,873 differentially expressed genes (DEGs) were identified and were functionally clustered to six hierarchical clusters. Fifteen starch biosynthesis genes had higher expression level in seeds. Four trait-specific modules and 3131 hub genes were identified by WGCNA, with the lightcyan and brown modules positively correlated with starch-related traits. Furthermore, two potential gene regulatory networks were proposed, including the co-expression of FtNAC70, FtPUL, and FtGBSS1-3 in the lightcyan module and FtbHLH5, C3H, FtBE2, FtISA3, FtSS3-5, and FtSS1 in the brown. All the above genes were preferentially expressed in seeds, further suggesting their role in seed starch biosynthesis. These results provide crucial guidance for further research on starch biosynthesis and its regulatory network in Tartary buckwheat.


Asunto(s)
Fagopyrum , Tracheophyta , RNA-Seq , Fagopyrum/metabolismo , Redes Reguladoras de Genes , Almidón/metabolismo , Tracheophyta/genética
5.
Funct Integr Genomics ; 22(6): 1449-1458, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36369301

RESUMEN

Tartary buckwheat is among the valuable crops, utilized as both food and Chinese herbal medicine. To uncover the accumulation dynamics of the main nutrients and their regulatory mechanism of Tartary buckwheat seeds, microscopic observations and nutrient analysis were conducted which suggested that starch, proteins as well as flavonoid gradually accumulated among seed development. Comparative proteomic analysis of rice Tartary buckwheat at three different developmental stages was performed. A total of 78 protein spots showed differential expression with 74 of them being successfully identified by MALDI-TOF/TOF MS. Among them, granule bound starch synthase (GBSS1) might be the critical enzyme that determines starch biosynthesis, while 11 S seed storage protein and vicilin seemed to be the main globulin and affect seed storage protein accumulation in Tartary buckwheat seeds. Two enzymes, flavanone 3-hydroxylase (F3H) and anthocyanidin reductase (ANR), involved in the flavonoid biosynthesis pathway were identified. Further analysis on the expression profiles of flavonoid biosynthetic genes revealed that F3H might be the key enzyme that promote flavonoid accumulation. This study provides insights into the mechanism of nutrition accumulation at the protein level in Tartary buckwheat seeds and may facilitate in the breeding and enhancement of Tartary buckwheat germplasm.


Asunto(s)
Fagopyrum , Fagopyrum/genética , Fagopyrum/metabolismo , Proteómica , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fitomejoramiento , Semillas , Proteínas de Almacenamiento de Semillas/genética , Almidón/metabolismo , Flavonoides/metabolismo , Regulación de la Expresión Génica de las Plantas
6.
Front Plant Sci ; 13: 803472, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35783922

RESUMEN

Golden buckwheat (Fagopyrum cymosum) is used in Traditional Chinese Medicine. It has received attention because of the high value of its various medicinal and nutritional metabolites, especially flavonoids (catechin and epicatechin). However, the metabolites and their encoding genes in golden buckwheat have not yet been identified in the global landscape. This study performed transcriptomics and widely targeted metabolomics analyses for the first time on rhizomes of golden buckwheat. As a result, 10,191 differentially expressed genes (DEGs) and 297 differentially regulated metabolites (DRMs) were identified, among which the flavonoid biosynthesis pathway was enriched in both transcriptome and metabolome. The integration analyses of the transcriptome and the metabolome revealed a network related to catechin, in which four metabolites and 14 genes interacted with each other. Subsequently, an SG5 R2R3-MYB transcription factor, named FcMYB1, was identified as a transcriptional activator in catechin biosynthesis, as it was positively correlated to eight flavonoid biosynthesis genes in their expression patterns and was directly bound to the promoters of FcLAR2 and FcF3'H1 by yeast one hybrid analysis. Finally, a flavonoid biosynthesis pathway was proposed in the rhizomes of golden buckwheat, including 13 metabolites, 11 genes encoding 9 enzymes, and 1 MYB transcription factor. The expression of 12 DEGs were validated by qRT-PCR, resulting in a good agreement with the Pearson R ranging from 0.83 to 1. The study provided a comprehensive flavonoid biosynthesis and regulatory network of golden buckwheat.

7.
Sci Rep ; 12(1): 11986, 2022 07 14.
Artículo en Inglés | MEDLINE | ID: mdl-35835786

RESUMEN

Tartary buckwheat (TB) is an edible pseudocereal with good health benefits, but its adhering thick shell and bitter taste inhibit its consumption. In this study, the first hybrid rice-Tartary buckwheat (RTB) variety Mikuqiao18 (M18), bred by the pedigree selection of crossbreeding 'Miqiao' (MQ) with 'Jingqiaomai2' (JQ2), was selected for an agronomic and metabolomics analysis. Compared with JQ2, M18 demonstrated a significantly lower yield per plant owing to the decreased grain weight and similar full-filling grain number per plant. However, M18 had a similar kernel weight per plant because of the thinner shell. The sense organ test suggested that M18 had higher taste quality regardless of partial replacement of rice through the improvement of preponderant indicators related to cereal taste quality, including lower values of total protein, albumin, glutelin, globulin, pasting temperature, cool paste viscosity, and setback. Meanwhile, M18 contained high levels of flavonoids, including rutin and quercetin, but presented a positive summary appraisal of cooking with 25% rice. Additionally, 92 metabolites were positively identified by GC-MS, including 59 differentially expressed metabolites (DEMs) between M18 and JQ2. Typically, M18 exhibited lower levels of 20 amino acids and higher levels of 6 sugars and 4 polyols. These DEMs might partly explain the superior eating quality of M18. In addition, M18 was abundant in 4-aminobutyric acid, which is beneficial to human health. The current findings offer a theoretical foundation for breeding rice-Tartary buckwheat with high yield and quality and promoting the cultivation and consumption of rice-Tartary buckwheat as a daily functional cereal.


Asunto(s)
Fagopyrum , Oryza , Fagopyrum/química , Humanos , Hibridación Genética , Oryza/genética , Fitomejoramiento , Rutina
8.
BMC Plant Biol ; 22(1): 339, 2022 Jul 14.
Artículo en Inglés | MEDLINE | ID: mdl-35831794

RESUMEN

BACKGROUND: Fagopyrum (Polygonaceae) is a small plant lineage comprised of more than fifteen economically and medicinally important species. However, the phylogenetic relationships of the genus are not well explored, and the characteristics of Fagopyrum chloroplast genomes (plastomes) remain poorly understood so far. It restricts the comprehension of species diversity in Fagopyrum. Therefore, a comparative plastome analysis and comprehensive phylogenomic analyses are required to reveal the taxonomic relationship among species of Fagopyrum. RESULTS: In the current study, 12 plastomes were sequenced and assembled from eight species and two varieties of Fagopyrum. In the comparative analysis and phylogenetic analysis, eight previously published plastomes of Fagopyrum were also included. A total of 49 plastomes of other genera in Polygonaceae were retrieved from GenBank and used for comparative analysis with Fagopyrum. The variation of the Fagopyrum plastomes is mainly reflected in the size and boundaries of inverted repeat/single copy (IR/SC) regions. Fagopyrum is a relatively basal taxon in the phylogenomic framework of Polygonaceae comprising a relatively smaller plastome size (158,768-159,985 bp) than another genus of Polygonaceae (158,851-170,232 bp). A few genera of Polygonaceae have nested distribution of the IR/SC boundary variations. Although most species of Fagopyrum show the same IRb/SC boundary with species of Polygonaceae, only a few species show different IRa/SC boundaries. The phylogenomic analyses of Fagopyrum supported the cymosum and urophyllum groups and resolved the systematic position of subclades within the urophyllum group. Moreover, the repeat sequence types and numbers were found different between groups of Fagopyrum. The plastome sequence identity showed significant differences between intra-group and inter-group. CONCLUSIONS: The deletions of intergenic regions cause a short length of Fagopyrum plastomes, which may be the main reason for plastome size diversity in Polygonaceae species. The phylogenomic reconstruction combined with the characteristics comparison of plastomes supports grouping within Fagopyrum. The outcome of these genome resources may facilitate the taxonomy, germplasm resources identification as well as plant breeding of Fagopyrum.


Asunto(s)
Fagopyrum , Genoma del Cloroplasto , Polygonaceae , Evolución Molecular , Fagopyrum/genética , Genoma del Cloroplasto/genética , Filogenia , Fitomejoramiento , Polygonaceae/genética
9.
Food Chem ; 371: 131125, 2022 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-34563971

RESUMEN

Tartary buckwheat has higher health-promoting value than common buckwheat. However, the related metabolites information except flavonoids is largely deficient. Here, we compared the seed metabolomes of the two species using a UHPLC-QqQ-MS-based metabolomics approach. In total, 722 metabolites were obtained, of which 84 and 78 were identified as the key active ingredients of Traditional Chinese Medicines and the active pharmaceutical ingredients for six major diseases-resistance, respectively. Comparative analysis showed there were obviously difference in metabolic profiles between the two buckwheat species, and further found 61 flavonoids and 94 non-flavonoids metabolites displayed significantly higher contents (≥2 fold) in Tartary buckwheat than in common buckwheat. Our results suggest that Tartary and common buckwheat seeds are rich in metabolites beneficial to human health, and non-flavonoids metabolites also contributed to Tartary buckwheat's higher health-promoting value than common buckwheat. This study provides valuable information for the development of new functional foods of Tartary buckwheat.


Asunto(s)
Fagopyrum , Flavonoides , Humanos , Metabolómica , Semillas
10.
BMC Plant Biol ; 21(1): 132, 2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33750309

RESUMEN

BACKGROUND: Tartary buckwheat seed development is an extremely complex process involving many gene regulatory pathways. MicroRNAs (miRNAs) have been identified as the important negative regulators of gene expression and performed crucial regulatory roles in various plant biological processes. However, whether miRNAs participate in Tartary buckwheat seed development remains unexplored. RESULTS: In this study, we first identified 26 miRNA biosynthesis genes in the Tartary buckwheat genome and described their phylogeny and expression profiling. Then we performed small RNA (sRNA) sequencing for Tartary buckwheat seeds at three developmental stages to identify the miRNAs associated with seed development. In total, 230 miRNAs, including 101 conserved and 129 novel miRNAs, were first identified in Tartary buckwheat, and 3268 target genes were successfully predicted. Among these miRNAs, 76 exhibited differential expression during seed development, and 1534 target genes which correspond to 74 differentially expressed miRNAs (DEMs) were identified. Based on integrated analysis of DEMs and their targets expression, 65 miRNA-mRNA interaction pairs (25 DEMs corresponding to 65 target genes) were identified that exhibited significantly opposite expression during Tartary buckwheat seed development, and 6 of the miRNA-mRNA pairs were further verified by quantitative real-time polymerase chain reaction (qRT-PCR) and ligase-mediated rapid amplification of 5' cDNA ends (5'-RLM-RACE). Functional annotation of the 65 target mRNAs showed that 56 miRNA-mRNA interaction pairs major involved in cell differentiation and proliferation, cell elongation, hormones response, organogenesis, embryo and endosperm development, seed size, mineral elements transport, and flavonoid biosynthesis, which indicated that they are the key miRNA-mRNA pairs for Tartary buckwheat seed development. CONCLUSIONS: Our findings provided insights for the first time into miRNA-mediated regulatory pathways in Tartary buckwheat seed development and suggested that miRNAs play important role in Tartary buckwheat seed development. These findings will be help to study the roles and regulatory mechanism of miRNAs in Tartary buckwheat seed development.


Asunto(s)
Fagopyrum/crecimiento & desarrollo , Fagopyrum/genética , MicroARNs/fisiología , ARN Mensajero/fisiología , ARN de Planta/fisiología , Semillas/crecimiento & desarrollo , Evolución Molecular , Perfilación de la Expresión Génica , Reacción en Cadena de la Ligasa , MicroARNs/genética , Filogenia , Desarrollo de la Planta/genética , ARN de Planta/genética , Reacción en Cadena en Tiempo Real de la Polimerasa , Semillas/genética
11.
BMC Genomics ; 22(1): 142, 2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33639857

RESUMEN

BACKGROUND: Tartary buckwheat (Fagopyrum tataricum), an important pseudocereal crop, has high economic value due to its nutritional and medicinal properties. However, dehulling of Tartary buckwheat is difficult owing to its thick and tough hull, which has greatly limited the development of the Tartary buckwheat processing industry. The construction of high-resolution genetic maps serves as a basis for identifying quantitative trait loci (QTLs) and qualitative trait genes for agronomic traits. In this study, a recombinant inbred lines (XJ-RILs) population derived from a cross between the easily dehulled Rice-Tartary type and Tartary buckwheat type was genotyped using restriction site-associated DNA (RAD) sequencing to construct a high-density SNP genetic map. Furthermore, QTLs for 1000-grain weight (TGW) and genes controlling hull type were mapped in multiple environments. RESULTS: In total, 4151 bin markers comprising 122,185 SNPs were used to construct the genetic linkage map. The map consisted of 8 linkage groups and covered 1444.15 cM, with an average distance of 0.35 cM between adjacent bin markers. Nine QTLs for TGW were detected and distributed on four loci on chromosome 1 and 4. A major locus detected in all three trials was mapped in 38.2-39.8 cM region on chromosome 1, with an LOD score of 18.1-37.0, and explained for 23.6-47.5% of the phenotypic variation. The genes controlling hull type were mapped to chromosome 1 between marker Block330 and Block331, which was closely followed by the major locus for TGW. The expression levels of the seven candidate genes controlling hull type present in the region between Block330 and Block336 was low during grain development, and no significant difference was observed between the parental lines. Six non-synonymous coding SNPs were found between the two parents in the region. CONCLUSIONS: We constructed a high-density SNP genetic map for the first time in Tartary buckwheat. The mapped major loci controlling TGW and hull type will be valuable for gene cloning and revealing the mechanism underlying grain development and easy dehulling, and marker-assisted selection in Tartary buckwheat.


Asunto(s)
Fagopyrum , Grano Comestible , Fagopyrum/genética , Ligamiento Genético , Polimorfismo de Nucleótido Simple , Sitios de Carácter Cuantitativo
12.
BMC Plant Biol ; 20(1): 505, 2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33148168

RESUMEN

BACKGROUND: Tartary buckwheat has gained popularity in the food marketplace due to its abundant nutrients and high bioactive flavonoid content. However, its difficult dehulling process has severely restricted its food processing industry development. Rice-tartary buckwheat, a rare local variety, is very easily dehulled, but the cellular, physiological and molecular mechanisms responsible for this easy dehulling remains largely unclear. RESULTS: In this study, we integrated analyses of the comparative cellular, physiological, transcriptome, and gene coexpression network to insight into the reason that rice-tartary buckwheat is easy to dehull. Compared to normal tartary buckwheat, rice-tartary buckwheat has significantly brittler and thinner hull, and thinner cell wall in hull sclerenchyma cells. Furthermore, the cellulose, hemicellulose, and lignin contents of rice-tartary buckwheat hull were significantly lower than those in all or part of the tested normal tartary buckwheat cultivars, respectively, and the significant difference in cellulose and hemicellulose contents between rice-tartary buckwheat and normal tartary buckwheat began at 10 days after pollination (DAP). Comparative transcriptome analysis identified a total of 9250 differentially expressed genes (DEGs) between the rice- and normal-tartary buckwheat hulls at four different development stages. Weighted gene coexpression network analysis (WGCNA) of all DEGs identified a key module associated with the formation of the hull difference between rice- and normal-tartary buckwheat. In this specific module, many secondary cell wall (SCW) biosynthesis regulatory and structural genes, which involved in cellulose and hemicellulose biosynthesis, were identified as hub genes and displayed coexpression. These identified hub genes of SCW biosynthesis were significantly lower expression in rice-tartary buckwheat hull than in normal tartary buckwheat at the early hull development stages. Among them, the expression of 17 SCW biosynthesis relative-hub genes were further verified by quantitative real-time polymerase chain reaction (qRT-PCR). CONCLUSIONS: Our results showed that the lower expression of SCW biosynthesis regulatory and structural genes in rice-tartary buckwheat hull in the early development stages contributes to its easy dehulling by reducing the content of cell wall chemical components, which further effects the cell wall thickness of hull sclerenchyma cells, and hull thickness and mechanical strength.


Asunto(s)
Grano Comestible/metabolismo , Fagopyrum/metabolismo , Manipulación de Alimentos , Celulosa/análisis , Grano Comestible/química , Grano Comestible/citología , Grano Comestible/fisiología , Fagopyrum/citología , Fagopyrum/genética , Fagopyrum/fisiología , Perfilación de la Expresión Génica , Genes de Plantas , Polisacáridos/análisis , Transcriptoma
13.
Food Chem ; 331: 127354, 2020 Nov 30.
Artículo en Inglés | MEDLINE | ID: mdl-32569973

RESUMEN

Polyphenols (flavonoids and anthraquinones) are one of the most important phytochemicals in Fagopyrum tataricum L. Gaertn. (tartary buckwheat). However, the relationship between the polyphenols of tartary buckwheat seeds and their morphological variations is unclear. We developed a liquid chromatography-mass spectrometry-based targeted metabolomics method to study the chemical profiles of 60 flavonoids and 11 anthraquinones in 40 seed cultivars (groats and hulls). Both flavonoids and anthraquinones were related to variations in seed color; the fold change from yellowish-brown to black seeds was 1.24-1.55 in groats and 0.26-0.76 in hulls. Only flavonoids contributed to significant differences in seed shape; the fold change from long to short seeds was 1.29-1.78 in groats and 1.39-1.44 in hulls. Some differential metabolites were identified at higher concentrations in hulls than in groats. This study provides new insights into differences in polyphenols among tartary buckwheat seeds with different color and shape.


Asunto(s)
Antraquinonas/análisis , Fagopyrum/metabolismo , Flavonoides/análisis , Metabolómica/métodos , Semillas/fisiología , Antraquinonas/metabolismo , Cromatografía Liquida/métodos , Fagopyrum/química , Flavonoides/metabolismo , Análisis de los Alimentos/métodos , Pigmentación , Metabolismo Secundario , Semillas/química , Semillas/metabolismo , Espectrometría de Masas en Tándem
14.
J Vis Exp ; (157)2020 03 11.
Artículo en Inglés | MEDLINE | ID: mdl-32225142

RESUMEN

Tartary buckwheat (TB) [Fagopyrum tataricum (L.) Gaertn] possesses various biological and pharmacological activities because it contains abundant secondary metabolites such as flavonoids, especially rutin. Agrobacterium rhizogenes have been gradually used worldwide to induce hairy roots in medicinal plants to investigate gene functions and increase the yield of secondary metabolites. In this study, we have described a detailed method to generate A. rhizogenes-mediated hairy roots in TB. Cotyledons and hypocotyledonary axis at 7-10 days were selected as explants and infected with A. rhizogenes carrying a binary vector, which induced adventitious hairy roots that appeared after 1 week. The generated hairy root transformation was identified based on morphology, resistance selection (kanamycin), and reporter gene expression (green fluorescent protein). Subsequently, the transformed hairy roots were self-propagated as required. Meanwhile, a myeloblastosis (MYB) transcription factor, FtMYB116, was transformed into the TB genome using the A. rhizogenes-mediated hairy roots to verify the role of FtMYB116 in synthesizing flavonoids. The results showed that the expression of flavonoid-related genes and the yield of flavonoid compounds (rutin and quercetin) were significantly (p < 0.01) promoted by FtMYB116, indicating that A. rhizogenes-mediated hairy roots can be used as an effective alternative tool to investigate gene functions and the production of secondary metabolites. The detailed step-by-step protocol described in this study for generating hairy roots can be adopted for any genetic transformation or other medicinal plants after adjustment.


Asunto(s)
Agrobacterium/metabolismo , Fagopyrum/genética , Fagopyrum/microbiología , Raíces de Plantas/microbiología , Transformación Genética , Regulación de la Expresión Génica de las Plantas , Genes Reporteros , Vectores Genéticos/metabolismo , Proteínas Fluorescentes Verdes/metabolismo , Luz , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Rutina/biosíntesis , Rutina/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
15.
Food Chem ; 318: 126478, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32126466

RESUMEN

With people's increasing needs for health concern, rutin and emodin in tartary buckwheat have attracted much attention for their antioxidant, anti-diabetic and reducing weight function. However, the biosynthesis of rutin and emodin in tartary buckwheat is still unclear; especially their later glycosylation contributing to make them more stable and soluble is uncovered. Based on tartary buckwheat' genome, the gene structures of 106 UGTs were analyzed; 21 candidate FtUGTs were selected to enzymatic test by comparing their transcript patterns. Among them, FtUGT73BE5 and other 4 FtUGTs were identified to glucosylate flavonol or emodin in vitro; especially rFtUGT73BE5 could catalyze the glucosylation of all tested flavonoids and emodin. Furthermore, the identical in vivo functions of FtUGT73BE5 were demonstrated in tartary buckwheat hairy roots. The transcript profile of FtUGT73BE5 was consistent with the accumulation trend of rutin in plant; this gene may relate to anti-adversity for its transcripts were up-regulated by MeJA, and repressed by ABA.


Asunto(s)
Emodina/metabolismo , Fagopyrum/genética , Glucosiltransferasas/genética , Rutina/biosíntesis , Acetatos/farmacología , Ciclopentanos/farmacología , Fagopyrum/efectos de los fármacos , Fagopyrum/metabolismo , Flavonoides/metabolismo , Flavonoles/metabolismo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genoma de Planta , Estudio de Asociación del Genoma Completo , Glucósidos/metabolismo , Glucosiltransferasas/metabolismo , Oxilipinas/farmacología , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Rutina/genética , Rutina/metabolismo
16.
Int J Mol Sci ; 20(17)2019 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-31484314

RESUMEN

Seed development is an essential and complex process, which is involved in seed size change and various nutrients accumulation, and determines crop yield and quality. Common buckwheat (Fagopyrum esculentum Moench) is a widely cultivated minor crop with excellent economic and nutritional value in temperate zones. However, little is known about the molecular mechanisms of seed development in common buckwheat (Fagopyrum esculentum). In this study, we performed RNA-Seq to investigate the transcriptional dynamics and identify the key genes involved in common buckwheat seed development at three different developmental stages. A total of 4619 differentially expressed genes (DEGs) were identified. Based on the results of Gene Ontology (GO) and KEGG analysis of DEGs, many key genes involved in the seed development, including the Ca2+ signal transduction pathway, the hormone signal transduction pathways, transcription factors (TFs), and starch biosynthesis-related genes, were identified. More importantly, 18 DEGs were identified as the key candidate genes for seed size through homologous query using the known seed size-related genes from different seed plants. Furthermore, 15 DEGs from these identified as the key genes of seed development were selected to confirm the validity of the data by using quantitative real-time PCR (qRT-PCR), and the results show high consistency with the RNA-Seq results. Taken together, our results revealed the underlying molecular mechanisms of common buckwheat seed development and could provide valuable information for further studies, especially for common buckwheat seed improvement.


Asunto(s)
Fagopyrum/crecimiento & desarrollo , Fagopyrum/genética , Perfilación de la Expresión Génica/métodos , Semillas/crecimiento & desarrollo , Semillas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Ontología de Genes , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
17.
J Agric Food Chem ; 67(40): 11262-11276, 2019 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-31509416

RESUMEN

Tartary buckwheat (Fagopyrum tataricum) seeds are rich in flavonoids. However, the detailed flavonoid compositions and the molecular basis of flavonoid biosynthesis in tartary buckwheat seeds remain largely unclear. Here, we performed a combined metabolite profiling and transcriptome analysis to identify flavonoid compositions and characterize genes involved in flavonoid biosynthesis in the developing tartary buckwheat seeds. In total, 234 flavonoids, including 10 isoflavones, were identified. Of these, 80 flavonoids were significantly differential accumulation during seed development. Transcriptome analysis indicated that most structural genes and some potential regulatory genes of flavonoid biosynthesis were significantly differentially expressed in the course of seed development. Correlation analysis between transcriptome and metabolite profiling shown that the expression patterns of some differentially expressed structural genes and regulatory genes were more consistent with the changes in flavonoids profiles during seed development and promoted one SG7 subgroup R2R3-MYB transcription factors (FtPinG0009153900.01) was identified as the key regulatory gene of flavonoid biosynthesis. These findings provide valuable information for understanding the mechanism of flavonoid biosynthesis in tartary buckwheat seeds and the further development of tartary buckwheat health products.


Asunto(s)
Fagopyrum/metabolismo , Flavonoides/biosíntesis , Proteínas de Plantas/genética , Semillas/crecimiento & desarrollo , Fagopyrum/química , Fagopyrum/genética , Fagopyrum/crecimiento & desarrollo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Filogenia , Proteínas de Plantas/metabolismo , Plantas/clasificación , Plantas/genética , Plantas/metabolismo , Semillas/química , Semillas/genética , Semillas/metabolismo
18.
Zhongguo Zhong Yao Za Zhi ; 43(3): 469-477, 2018 Feb.
Artículo en Chino | MEDLINE | ID: mdl-29600610

RESUMEN

Tartary buckwheat Fagopyrum tataricum is an important medicinal and functional herb due to its rich content of flavonoids in the seeds. F.tataricum exhibited good functions for free radicals scavenging, anti-oxidation, anti-aging activities. Although much genetic knowledge of the synthesis, regulation, accumulation of rutin, the genetic basis of proanthocyanidins(PAs) in tartary buckwheat and their related gene expression changes under different lights(blue, red, far red, ultraviolet light) remain largely unexplored. In this study, we cloned one anthocyanidin reductase gene(ANR) and two leucocyanidin reductase gene(LAR) named FtANR,FtLAR1,FtLAR3 involved in formation of(+)-catechin and(-)-epicatechin precusor proanthocyanidin by digging out F. tataricum seed transcriptome data. The expression data showed that the opposite influence of red light on these gene transcript level compared to others lights. The expression levels of FtANR and FtLAR1 decreased and FtLAR3 appeared increment after exposed in the red light, while the expression levels of those genes appeared opposite result after exposed in the blue and far red light.


Asunto(s)
Fagopyrum/enzimología , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Luz , Proantocianidinas/biosíntesis , Fagopyrum/efectos de la radiación , NADH NADPH Oxidorreductasas/genética , Proteínas de Plantas/genética , Semillas/enzimología , Semillas/efectos de la radiación
19.
Sci Rep ; 7(1): 11792, 2017 09 18.
Artículo en Inglés | MEDLINE | ID: mdl-28924217

RESUMEN

Tartary buckwheat seeds are rich in various nutrients, such as storage proteins, starch, and flavonoids. To get a good knowledge of the transcriptome dynamics and gene regulatory mechanism during the process of seed development and nutrients accumulation, we performed a comprehensive global transcriptome analysis using rice tartary buckwheat seeds at different development stages, namely pre-filling stage, filling stage, and mature stage. 24 819 expressed genes, including 108 specifically expressed genes, and 11 676 differentially expressed genes (DEGs) were identified. qRT-PCR analysis was performed on 34 DEGs to validate the transcriptome data, and a good consistence was obtained. Based on their expression patterns, the identified DEGs were classified to eight clusters, and the enriched GO items in each cluster were analyzed. In addition, 633 DEGs related to plant hormones were identified. Furthermore, genes in the biosynthesis pathway of nutrients accumulation were analyzed, including 10, 20, and 23 DEGs corresponding to the biosynthesis of seed storage proteins, flavonoids, and starch, respectively. This is the first transcriptome analysis during seed development of tartary buckwheat. It would provide us a comprehensive understanding of the complex transcriptome dynamics during seed development and gene regulatory mechanism of nutrients accumulation.


Asunto(s)
Fagopyrum/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Almacenamiento de Semillas/biosíntesis , Semillas/metabolismo , Transcriptoma/fisiología , Fagopyrum/genética , Proteínas de Almacenamiento de Semillas/genética , Semillas/genética
20.
Zhong Yao Cai ; 39(3): 510-4, 2016 Mar.
Artículo en Chino | MEDLINE | ID: mdl-30088874

RESUMEN

Objective: To further study Fagopyrum tataricum genome and to screen the functional genes. Methods: The variety JINQIAO No. 2( Fagopyrum tataricum) native to Shanxi, was used for BAC library construction. The high molecular weight DNA( HMWDNA) was isolated from Fagopyrum tataricum leaves used the methods of Peterson. The HMW-DNA was cut by Hind Ⅲ and ligated to BAC vectors; the ligations were transformed into Escherichia coli DH10 B. Then 48 BAC clones were randomly selected and sequenced BAC end sequences. Results: The library consisted of 30 000 clones with an average insert size of about 123 kb and the empty clone ratio was less than 1%. The library represented an equivalent about 6. 9 fold size of Fagopyrum tataricum genome. Which obtained 89 BAC end sequences,among which 7 sequences( 8%) had alignment results when comparing with NCBI Gen Bank database. The blast hits contained some genes with known function,such as rpo Tm2,Trrap and MDR1 genes,etc. Those genes were associated with DNA binding, transmembrane transport and phosphotransferase activity function. And it was also found that the sequence of 40G19-F was probably repetitive sequences in Fagopyrum tataricum genome. Conclusion: The BAC library will be helpful for the gene cloning and whole genome sequencing of Fagopyrum tataricum.


Asunto(s)
Fagopyrum , Biblioteca de Genes , Clonación Molecular , ADN , Secuencias Repetitivas de Ácidos Nucleicos , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA