Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 21(13)2020 Jun 29.
Artículo en Inglés | MEDLINE | ID: mdl-32610479

RESUMEN

Blue light extensively regulates multiple physiological processes and secondary metabolism of plants. Although blue light quantity (fluence rate) is important for plant life, few studies have focused on the effects of different blue light intensity on plant secondary metabolism regulation, including tea plants. Here, we performed transcriptomic and metabolomic analyses of young tea shoots (one bud and two leaves) under three levels of supplemental blue light, including low-intensity blue light (LBL, 50 µmol m-2 s-1), medium-intensity blue light (MBL, 100 µmol m-2 s-1), and high-intensity blue light (HBL, 200 µmol m-2 s-1). The total number of differentially expressed genes (DEGs) in LBL, MBL and HBL was 1, 7 and 1097, respectively, indicating that high-intensity blue light comprehensively affects the transcription of tea plants. These DEGs were primarily annotated to the pathways of photosynthesis, lipid metabolism and flavonoid synthesis. In addition, the most abundant transcription factor (TF) families in DEGs were bHLH and MYB, which have been shown to be widely involved in the regulation of plant flavonoids. The significantly changed metabolites that we detected contained 15 lipids and 6 flavonoid components. Further weighted gene co-expression network analysis (WGCNA) indicated that CsMYB (TEA001045) may be a hub gene for the regulation of lipid and flavonoid metabolism by blue light. Our results may help to establish a foundation for future research investigating the regulation of woody plants by blue light.


Asunto(s)
Camellia sinensis/crecimiento & desarrollo , Camellia sinensis/metabolismo , Metabolismo Secundario/fisiología , Camellia sinensis/genética , Catequina/metabolismo , Flavonoides/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Luz , Metabolismo de los Lípidos/fisiología , Metabolómica/métodos , Fotosíntesis/fisiología , Hojas de la Planta/metabolismo , Proteínas de Plantas/metabolismo , Té/metabolismo , Factores de Transcripción/metabolismo , Transcriptoma/genética
2.
Toxicol Lett ; 318: 1-11, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31618665

RESUMEN

Triptolide (TP), a principal bioactive component extracted from traditional Chinese medicine Tripterygium wilfordii Hook. F. (TWHF), has attracted wide attention of its therapeutic effects on inflammation and autoimmune diseases. However, the therapeutic application of TP is hindered by severe cardiomyocyte toxicity and narrow therapeutic window. We previously identified that the p53 was an indispensable contributor in TP-induced myocardial injury. p53 has an inhibitory effect on IKKß-NF-κB pathway that regulates glucose transporters (GLUT) expression. Based on these evidences, we speculate that p53 mediates TP-disturbed glucose uptake by blocking IKKß-NF-κB signaling. This study focused on the effect of TP on cardiac glucose uptake and the role of p53 in glucose metabolism in cardiomyocytes, and p53 -/- mice. TP treatment depressed glucose consumption and ATP production resulting in myocardial damage. Incubation with ATP (5 mM) remarkably decreased the cellular damage. Immunoblotting and immunofluorescence identified that TP suppressed glucose uptake by restricting IKKß-NF-κB signaling activation, GLUT1 and GLUT4 expression. p53 inhibition alleviated the cell damage and the compromise of glucose uptake. Mechanistically, p53 antagonist PFTα abolished TP-induced the inhibition of IKKß, IκBα phosphorylation, p65 nuclear translocation, and GLUT1, GLUT4 expression. Consistently, in acute heart injury models, p53 deficiency upregulated IKKß-NF-κB activation and GLUT1, GLUT4 protein levels which was also indicated as amelioration of heart histological injury after 1.2 mg kg-1 TP administration. The present findings indicate that TP-induced p53 overactivation suppresses glucose uptake by inhibiting IKKß-NF-κB pathway and downregulating NF-κB-dependent GLUT1 and GLUT4 expression.


Asunto(s)
Diterpenos/toxicidad , Glucosa/metabolismo , Cardiopatías/inducido químicamente , Quinasa I-kappa B/metabolismo , Miocitos Cardíacos/efectos de los fármacos , FN-kappa B/metabolismo , Fenantrenos/toxicidad , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/efectos de los fármacos , Cardiotoxicidad , Línea Celular , Metabolismo Energético/efectos de los fármacos , Compuestos Epoxi/toxicidad , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Transportador de Glucosa de Tipo 4/genética , Transportador de Glucosa de Tipo 4/metabolismo , Cardiopatías/genética , Cardiopatías/metabolismo , Cardiopatías/patología , Ratones Noqueados , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Ratas Sprague-Dawley , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA