Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 6440, 2024 03 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499631

RESUMEN

This study aimed at exploring the effects of γ-polyglutamic acid on the growth of desert alfalfa and the soil microorganisms in the rhizosphere. The study examined the effects of varying concentrations of γ-polyglutamic acid (0%-CK, 2%-G1, 4%-G2, 6%-G3) on sandy soil, the research investigated its impact on the growth characteristics of alfalfa, nutrient content in the rhizosphere soil, and the composition of bacterial communities. The results indicated that there were no significant differences in soil organic matter, total nitrogen, total phosphorus, total potassium, and available phosphorus content among the G1, G2, and G3 treatments. Compared to CK, the soil nutrient content in the G2 treatment increased by 14.81-186.67%, showing the highest enhancement. In terms of alfalfa growth, the G2 treatment demonstrated the best performance, significantly increasing plant height, chlorophyll content, above-ground biomass, and underground biomass by 54.91-154.84%. Compared to the CK treatment, the number of OTUs (operational taxonomic units) in the G1, G2, and G3 treatments increased by 14.54%, 8.27%, and 6.84%, respectively. The application of γ-polyglutamic acid altered the composition and structure of the bacterial community, with Actinobacteriota, Proteobacteria, Chloroflexi, Acidobacteriota, and Gemmatimonadota accounting for 84.14-87.89% of the total bacterial community. The G2 treatment significantly enhanced the diversity and evenness of soil bacteria in the rhizosphere. Redundancy analysis revealed that organic matter, total nitrogen, total potassium, moisture content, and pH were the primary factors influencing the structure of bacterial phyla. At the genus level, moisture content emerged as the most influential factor on the bacterial community. Notably, moisture content exhibited a strong positive correlation with Acidobacteriota, which in turn was positively associated with indicators of alfalfa growth. In summary, the application of γ-polyglutamic acid at a 4% ratio has the potential for improving sandy soil quality, promoting plant growth, and regulating the rhizosphere microbial community.


Asunto(s)
Arena , Suelo , Suelo/química , Medicago sativa , Rizosfera , Ácido Poliglutámico , Microbiología del Suelo , Bacterias , Acidobacteria , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , Suplementos Dietéticos/análisis
2.
PLoS One ; 18(11): e0293661, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38011254

RESUMEN

In order to investigate the impact of herbaceous root development on soil slope stability in expansive soil areas, the research was conducted in the soil slope experimental area of Yaoshi Town, Shangzhou District, Shangluo City. Three types of herbaceous plants, namely Lolium perenne, Medicago, and Cynodon dactylon, were planted to examine their influence on slope stability. The results indicated that Lolium perenne had significantly higher root length density and root surface area density compared to Cynodon dactylon and Medicago. However, the root weight density of Cynodon dactylon was found to be highest. The roots of Lolium perenne, Cynodon dactylon, and Medicago were predominantly observed in diameter ranges of 0 < L ≤ 1.0 mm, 0 < L ≤ 2.5 mm, and 2.5 < L ≤ 3.0 mm, respectively. The roots of herbaceous plants have the ability to enhance water retention in soil, resist hydraulic erosion of slope soil, and reduce soil shrinkage and swelling. During the initial phase of herbaceous planting, there is an accelerated process of organic carbon mineralization in the soil. The roots of herbaceous plants play a crucial role in soil consolidation and slope protection. They achieve this by dispersing large clastic particles, binding small particles together, altering soil porosity, enhancing soil water retention, and reducing soil water infiltration. It was found that Lolium perenne and Medicago, which have well-developed roots, exhibited superior slope protection effects. These findings contribute to the theoretical understanding for the implementation of green ecological protection technology on soil slopes.


Asunto(s)
Lolium , Suelo , Raíces de Plantas/metabolismo , Lolium/metabolismo , Plantas/metabolismo , Cynodon/metabolismo , Medicago , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA