Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 325: 117812, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38301984

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Diabetic ulcers represent a chronic condition characterized by prolonged hyperglycemia and delayed wound healing, accompanied by endocrine disorders, inflammatory responses, and microvascular damage in the epidermal tissue, demanding effective clinical treatment approaches. For thousands of years, ancient Chinese ethnopharmacological studies have documented the use of Poria cocos (Schw.) Wolf in treating diabetic ulcers. Recent research has substantiated the diverse pharmacological effects of Poria cocos (Schw.) Wolf, including its potential to alleviate hyperglycemia and exhibit anti-inflammatory, antioxidant, and immune regulatory properties, which could effectively mitigate diabetic ulcer symptoms. Furthermore, being a natural medicine, Poria cocos (Schw.) Wolf has demonstrated promising therapeutic effects and safety in the management of diabetic ulcers, holding significant clinical value. Despite its potential clinical efficacy and applications in diabetic ulcer treatment, the primary active components and underlying pharmacological mechanisms of Poria cocos (Schw.) Wolf remains unclear. Further investigations are imperative to establish a solid foundation for drug development in this domain. AIM OF THE STUDY AND MATERIALS AND METHODS: In this study, we aimed to identify the active compounds and potential targets of Poria cocos (Schw.) Wolf using UHPLC-Q-TOF-MS and TCMSP databases. Additionally, we attempt to identify targets related to diabetic ulcers. Following enrichment analysis, a network of protein-protein interactions was constructed to identify hub genes based on the common elements between the two datasets. To gain insights into the binding activities of the hub genes and active ingredients, molecular docking analysis was employed. Furthermore, to further validate the therapeutic effect of Poria cocos (Schw.) Wolf, we exerted in vitro experiments using human umbilical vein vascular endothelial cells and human myeloid leukemia monocytes (THP-1). The active ingredient of Poria cocos (Schw.) Wolf was applied in these experiments. Our investigations included various assays, such as CCK-8, scratch test, immunofluorescence, western blotting, RT-PCR, and flow cytometry, to explore the potential of Poria cocos (Schw.) Wolf triterpenoid extract (PTE) in treating diabetic ulcers. RESULTS: The findings here highlighted PTE as the primary active ingredient in Poria cocos (Schw.) Wolf. Utilizing network pharmacology, we identified 74 potential targets associated with diabetic ulcer treatment for Poria cocos (Schw.) Wolf, with five hub genes (JUN, MAPK1, STAT3, AKT1, and CTNNB1). Enrichment analysis revealed the involvement of multiple pathways in the therapeutic process, with the PI3K-AKT signaling pathway showing significant enrichment. Through molecular docking, we discovered that relevant targets within this pathway exhibited strong binding with the active components of Poria cocos (Schw.) Wolf. In vitro experiments unveiled that PTE (10 mg/L) facilitated the migration of human umbilical vein vascular endothelial cells (P < 0.05). PTE also increased the expression of CD31 and VEGF mRNA (P < 0.05) while activating the expressions of p-PI3K and p-AKT (P < 0.05). Moreover, PTE demonstrated its potential by reducing the expression of IL-1ß, IL-6, TNF-α, and NF-κB mRNA in THP-1 (P < 0.05) and fostering M2 macrophage polarization. These results signify the potential therapeutic effects of PTE in treating diabetic ulcers, with its beneficial actions mediated through the PI3K-AKT signaling pathway. CONCLUSIONS: PTE is the main active ingredient in Poria cocos (Schw.) Wolf that exerts therapeutic effects. Through PI3K-AKT signaling pathway activation and inflammatory response reduction, PTE promotes angiogenesis, thereby healing diabetic ulcers.


Asunto(s)
Antineoplásicos , Diabetes Mellitus , Medicamentos Herbarios Chinos , Hiperglucemia , Triterpenos , Wolfiporia , Lobos , Animales , Humanos , Proteínas Proto-Oncogénicas c-akt , Wolfiporia/química , Fosfatidilinositol 3-Quinasas , Úlcera , Simulación del Acoplamiento Molecular , Células Endoteliales , Transducción de Señal , Antineoplásicos/farmacología , Triterpenos/farmacología , Triterpenos/uso terapéutico , Triterpenos/análisis , ARN Mensajero , Diabetes Mellitus/tratamiento farmacológico , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico
2.
Molecules ; 27(19)2022 Sep 29.
Artículo en Inglés | MEDLINE | ID: mdl-36234980

RESUMEN

Autocrine and paracrine factors play key roles in the process of Androgenetic alopecia (AGA), which are secreted by balding dermal papilla cells (DPCs) after dihydrotestosterone (DHT) induction. Camellia seed cake is an oriental oil extraction byproduct, and its extract has been traditionally used to wash hair in China. This study elucidated the hair growth-promoting effects of Camellia seed cake extract (CSCE) in DHT-treated cultured DPCs and its underlying mechanisms. The effect of CSCE on cell viability and release of inflammatory factors IL-6 and IL-1α was performed on human dermal papilla cells (DPCs) incubated with DHT. Relative expression of bax, bcl-2, p53, androgen receptor (AR) and 5α- reductase type II (SRD5A2) was determined by PCR. Senescence-associated was examined by ß-galactosidase (SA-ß-Gal) assays. CSCE restored DHT-induced cell damage in a dose-dependent manner, and effectively reduced the production of IL-6 and IL-1α in DHT-treated DPCs. CSCE exhibited an anti-apoptotic effect, which increased the expression of bcl-2, and decreased the expressions of bax and p53 in DHT-incubated DPCs. CSCE also showed an anti-androgenic effect reversing the increase in AR and SRD5A2 expressions in DPCs driven by DHT incubation. In addition, CSCE inhibited the ß-galactosidase enzyme activity and slowed down the cell senescence of DPCs which is crucial for AGA progression. In this study, we found that CSCE may have the potential to prevent and alleviate AGA by abrogating the effect of DHT in cultured DPCs.


Asunto(s)
Camellia , Dihidrotestosterona , 3-Oxo-5-alfa-Esteroide 4-Deshidrogenasa , Alopecia/tratamiento farmacológico , Alopecia/metabolismo , Células Cultivadas , Dihidrotestosterona/farmacología , Cabello , Folículo Piloso , Humanos , Interleucina-6/metabolismo , Proteínas de la Membrana/metabolismo , Extractos Vegetales/metabolismo , Extractos Vegetales/farmacología , Receptores Androgénicos/metabolismo , Semillas/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/genética , Proteína X Asociada a bcl-2/metabolismo , beta-Galactosidasa/metabolismo
3.
J Cosmet Dermatol ; 21(10): 5018-5025, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35364626

RESUMEN

OBJECTIVES: Camellia seed cake is a by-product of Camellia oleifera Abel seed after oil extraction. Washing hair with Camellia seed cake extract is a traditional Chinese custom that has lasted for over one thousand years. However, the hair growth-promoting effects of Camellia seed cake extract were not investigated so far. This work examined the effects of de-saponinated Camellia seed cake extracts (DS-CSE) on hair growth, using in vitro and in vivo models. METHODS: The studies on cell proliferation, cell cycle regulation, and K+ channels activation effects of DS-CSE were performed on human dermal papilla cells (DPCs). Relative expression of insulin-like growth factor-1 (IGF-1), vascular endothelial growth factor (VEGF), hepatocyte growth factor (HGF), and transforming growth factor-ß (TGF-ß1) in DPCs was determined by RT-PCR. Relative expression of ERK and AKT was determined by Western blot analysis. Hair growth-promoting effects were also measured in C57BL/6J mice model. RESULTS: DS-CSE treatment significantly proliferated DPCs, relating to the increased proportion of DPCs in S and G2 /M phases, the activation of potassium channels and the promoted phosphorylation of ERK and AKT in DPCs. DS-CSE treatment also significantly upregulated the mRNA levels of HGF, VEGF and IGF-1, and downregulated the mRNA level of TGF-ß1. Topical application of DS-CSE promoted hair growth on shaven back mice and also upregulated the expression of VEGF in mice. CONCLUSION: Our results demonstrated that DS-CSE exerts a hair growth-promoting effect in vitro and in vivo by proliferating DPCs through the ERK and AKT signaling pathways and regulating the expression of growth factors.


Asunto(s)
Camellia , Folículo Piloso , Humanos , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , Factor I del Crecimiento Similar a la Insulina/metabolismo , Factor I del Crecimiento Similar a la Insulina/farmacología , Factor A de Crecimiento Endotelial Vascular/genética , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Proto-Oncogénicas c-akt/farmacología , Camellia/genética , Camellia/metabolismo , Células Cultivadas , Ratones Endogámicos C57BL , Cabello , Proliferación Celular , Semillas , Extractos Vegetales/farmacología , Extractos Vegetales/metabolismo , ARN Mensajero/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA