Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
PLoS Comput Biol ; 16(9): e1008198, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32931495

RESUMEN

Calcium imaging with fluorescent protein sensors is widely used to record activity in neuronal populations. The transform between neural activity and calcium-related fluorescence involves nonlinearities and low-pass filtering, but the effects of the transformation on analyses of neural populations are not well understood. We compared neuronal spikes and fluorescence in matched neural populations in behaving mice. We report multiple discrepancies between analyses performed on the two types of data, including changes in single-neuron selectivity and population decoding. These were only partially resolved by spike inference algorithms applied to fluorescence. To model the relation between spiking and fluorescence we simultaneously recorded spikes and fluorescence from individual neurons. Using these recordings we developed a model transforming spike trains to synthetic-imaging data. The model recapitulated the differences in analyses. Our analysis highlights challenges in relating electrophysiology and imaging data, and suggests forward modeling as an effective way to understand differences between these data.


Asunto(s)
Calcio/metabolismo , Fenómenos Electrofisiológicos/fisiología , Modelos Neurológicos , Imagen Molecular/métodos , Neuronas , Potenciales de Acción/fisiología , Animales , Lóbulo Frontal/citología , Lóbulo Frontal/fisiología , Ratones , Neuronas/metabolismo , Neuronas/fisiología , Imagen Óptica
2.
Neuron ; 94(4): 866-879.e4, 2017 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-28521137

RESUMEN

Activity in the mouse anterior lateral motor cortex (ALM) instructs directional movements, often seconds before movement initiation. It is unknown whether this preparatory activity is localized to ALM or widely distributed within motor cortex. Here we imaged activity across motor cortex while mice performed a whisker-based object localization task with a delayed, directional licking response. During tactile sensation and the delay epoch, object location was represented in motor cortex areas that are medial and posterior relative to ALM, including vibrissal motor cortex. Preparatory activity appeared first in deep layers of ALM, seconds before the behavioral response, and remained localized to ALM until the behavioral response. Later, widely distributed neurons represented the outcome of the trial. Cortical area was more predictive of neuronal selectivity than laminar location or axonal projection target. Motor cortex therefore represents sensory, motor, and outcome information in a spatially organized manner.


Asunto(s)
Conducta Animal/fisiología , Actividad Motora/fisiología , Corteza Motora/fisiología , Neuronas/fisiología , Tacto/fisiología , Animales , Axones , Calcio/metabolismo , Toma de Decisiones , Procesamiento de Imagen Asistido por Computador , Ratones , Corteza Motora/metabolismo , Imagen Óptica , Tractos Piramidales/metabolismo , Tractos Piramidales/fisiología , Vibrisas
3.
Nat Methods ; 10(2): 162-70, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23314171

RESUMEN

We describe an intensity-based glutamate-sensing fluorescent reporter (iGluSnFR) with signal-to-noise ratio and kinetics appropriate for in vivo imaging. We engineered iGluSnFR in vitro to maximize its fluorescence change, and we validated its utility for visualizing glutamate release by neurons and astrocytes in increasingly intact neurological systems. In hippocampal culture, iGluSnFR detected single field stimulus-evoked glutamate release events. In pyramidal neurons in acute brain slices, glutamate uncaging at single spines showed that iGluSnFR responds robustly and specifically to glutamate in situ, and responses correlate with voltage changes. In mouse retina, iGluSnFR-expressing neurons showed intact light-evoked excitatory currents, and the sensor revealed tonic glutamate signaling in response to light stimuli. In worms, glutamate signals preceded and predicted postsynaptic calcium transients. In zebrafish, iGluSnFR revealed spatial organization of direction-selective synaptic activity in the optic tectum. Finally, in mouse forelimb motor cortex, iGluSnFR expression in layer V pyramidal neurons revealed task-dependent single-spine activity during running.


Asunto(s)
Proteínas de Escherichia coli , Colorantes Fluorescentes , Ácido Glutámico/metabolismo , Proteínas Fluorescentes Verdes , Proteínas Recombinantes de Fusión , Transmisión Sináptica/fisiología , Animales , Astrocitos/metabolismo , Técnicas Biosensibles , Caenorhabditis elegans , Señalización del Calcio/fisiología , Proteínas de Escherichia coli/síntesis química , Potenciales Postsinápticos Excitadores/fisiología , Colorantes Fluorescentes/síntesis química , Colorantes Fluorescentes/metabolismo , Proteínas Fluorescentes Verdes/síntesis química , Hipocampo/metabolismo , Ratones , Corteza Motora/metabolismo , Neuronas/metabolismo , Estimulación Luminosa , Células Piramidales/metabolismo , Proteínas Recombinantes de Fusión/síntesis química , Retina/fisiología , Relación Señal-Ruido , Pez Cebra
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA