Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Biomed Pharmacother ; 165: 115210, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37499457

RESUMEN

OBJECTIVE: This study aims at investigating the potential targets and functional mechanisms of Scutellariae Radix-Coptidis Rhizoma (QLYD) against atherosclerosis (AS) through network pharmacology, molecular docking, bioinformatic analysis and experimental validation. METHODS: The compositions of QLYD were collected from the Traditional Chinese Medicine Systems Pharmacology Database and Analysis Platform (TCMSP) and literature, where the main active components of QLYD and corresponding targets were identified. The potential therapeutic targets of AS were excavated using the OMIM database, DrugBank database, DisGeNET database, CTD database and GEO datasets. The protein-protein interaction (PPI) network of common targets was constructed and visualized by Cytoscape 3.7.2 software. Gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) analysis were performed to analyze the function of core targets in the PPI network. Molecular docking was carried out using AutoDockTools, AutoDock Vina, and PyMOL software to verify the correlation between the main components of QLYD and the core targets. Mouse AS model was established and the results of network pharmacology were verified by in vivo experiments. RESULTS: Totally 49 active components and 225 corresponding targets of QLYD were obtained, where 68 common targets were identified by intersecting with AS-related targets. Five hub genes including IL6, VEGFA, AKT1, TNF, and IL1B were screened from the PPI network. GO functional analysis reported that these targets had associations mainly with cellular response to oxidative stress, regulation of inflammatory response, epithelial cell apoptotic process, and blood coagulation. KEGG pathway analysis demonstrated that these targets were correlated to AGE-RAGE signaling pathway in diabetic complications, TNF signaling pathway, IL-17 signaling pathway, MAPK signaling pathway, and NF-kappa B signaling pathway. Results of molecular docking indicated good binding affinity of QLYD to FOS, AKT1, and TNF. Animal experiments showed that QLYD could inhibit inflammation, improve blood lipid levels and reduce plaque area in AS mice to prevent and treat AS. CONCLUSION: QLYD may exert anti-inflammatory and anti-oxidative stress effects through multi-component, multi-target and multi-pathway to treat AS.


Asunto(s)
Aterosclerosis , Medicamentos Herbarios Chinos , Animales , Ratones , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Farmacología en Red , Scutellaria baicalensis , Simulación del Acoplamiento Molecular , Modelos Animales de Enfermedad , Medicina Tradicional China
2.
Small ; 18(21): e2200179, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35396783

RESUMEN

Target therapy for highly heterogeneous cancers represents a major clinical challenge due to the lack of recurrent therapeutic targets identified in these tumors. Herein, the authors report a tumor-customized targeting photothermal therapy (PTT) strategy for highly heterogeneous cancers, by which 2D supramolecular self-assembled nanodiscs are modified with tumor-specific binding peptides identified by phage display techniques. Taking osteosarcoma (OS) as a model heterogeneous cancer, an OS targeting peptide (OTP) is first selected after biopanning and is demonstrated to successfully bind to this heterogeneous cancer cells/tissues. Successful conjugation of OTP to heptamethine cyanine (Cy7)-based 2D nanodiscs Cy7-TCF (2-dicyanomethylene-3-cyano-4,5,5-trimethyl-2,5-dihydrofuran,TCF) enables the 2D nanodiscs to specifically target the heterogeneous tumor. Notably, a single dose injection of this targeted nanodisc (T-ND) not only effectively induces enhanced photothermal tumor ablation under near-infrared light, but also exhibits sevenfold increase of tumor retention time (more than 24 days) compared to generic nanomedicine. Thus, the authors' findings suggest that the combination of phage display-based affinity peptides selection and 2D supramolecular nanodiscs leads to the development of a platform technology for highly heterogeneous cancers precise therapy, offering specific tumor targeting, ultralong tumor retention, and precise PTT.


Asunto(s)
Nanopartículas , Neoplasias , Línea Celular Tumoral , Humanos , Rayos Infrarrojos , Nanomedicina , Nanopartículas/química , Neoplasias/tratamiento farmacológico , Fototerapia , Terapia Fototérmica
3.
Mol Biol Rep ; 48(8): 5897-5904, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34297325

RESUMEN

BACKGROUND: Artemisia selengensis is traditional Chinese medicine and phytochemical analysis indicated that A. selengensis contains essential oils, fatty acids and phenolic acids. The lack of reference genomic information may lead to tardiness in molecular biology research of A. selengensis. METHOD AND RESULTS: Karyotype analysis, genome survey, and genome assembly was employed to acquire information on the genome structure of A. selengensis. The chromosome number is 2n = 2x = 36, karyotype formula is 28 m + 8Sm, karyotype asymmetry coefficient is 58.8%, and karyotypes were symmetric to Stebbins' type 2A. Besides, the flow cytometry findings reported that the mean peak value of fluorescent intensity is 1,170,677, 2C DNA content is 12 pg and the genome size was estimated to be approximately 5.87 Gb. Furthermore, the genome survey generates 341,478,078 clean reads, unfortunately, after K-mer analysis, no significant peak can be observed, the heterozygosity, repetitive rate and genome size was unable to estimated. It is speculated that this phenomenon might be due to the complexity of genome structure. 37,266 contigs are preliminary assembled with Oxford Nanopore Technology (ONT) sequencing, totaling 804 Mb and GC content was 34.08%. The total length is 804,475,881 bp, N50 is 29,624 bp, and the largest contig length is 239,792 bp. CONCLUSION: This study reveals the preliminary information of genome size of A. selengensis. These findings may provide supportive information for sequencing and assembly of whole-genome sequencing and encourage the progress of functional gene discovery, genetic improvement, evolutionary study, and structural studies of A. selengensis.


Asunto(s)
Artemisia/genética , Composición de Base/genética , Tamaño del Genoma/genética , Genómica/métodos , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Cariotipo , Cariotipificación/métodos , Anotación de Secuencia Molecular/métodos , Filogenia , Análisis de Secuencia de ADN/métodos , Secuenciación Completa del Genoma
4.
Oncol Lett ; 15(5): 6527-6532, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29731854

RESUMEN

Cantharidin (CTD), a component of Mylabris (blister beetle), is a traditional Chinese medicine that exerts an anticancer effect in multiple types of cancer cells. The aim of the present study was to investigate whether CTD exhibited anti-metastatic and inhibitory cell proliferation effects against human non-small cell lung cancer (NSCLC) A549 cells, and the possible underlying mechanism by which this occurs. The results of the present study demonstrated that CTD arrested proliferation, suppressed invasion and migration and induced apoptosis in A549 cells in vitro. Alterations of apoptosis-associated protein levels, including B-cell lymphoma-2 (Bcl-2), Bcl-associated X (Bax) and active caspase-3, were detected. Furthermore, the present study demonstrated that CTD activated autophagy through downregulation of p62 expression and upregulation of microtubule-associated proteins 1A/1B light chain 3B and Beclin-1 expression. Additionally, western blot analysis identified that CTD inhibited the phosphatidylinositol 3-kinase (PI3K)/RAC serine/threonine protein kinase (Akt)/mechanistic target of rapamycin (mTOR) signaling pathway in NSCLC, demonstrating that the levels of phosphorylated (p-)Akt, p-mTOR, phosphorylated ribosomal p70S6 protein kinase (p-p70-S6K) and cyclin D1 were significantly decreased following treatment with CTD. In conclusion, the results of the present study indicated that CTD impeded cell growth and migration by inhibiting PI3K/Akt/mTOR signaling in NSCLC, and promoted autophagy and apoptosis. CTD exhibited anticancer activity against NSCLC in vitro, revealing it as a potential candidate for the treatment of NSCLC.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA