Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Environ Sci Pollut Res Int ; 30(18): 51531-51541, 2023 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-36810819

RESUMEN

Mercury is a highly toxic heavy metal with definite cardiotoxic properties and can affect the health of humans and animals through diet. Selenium (Se) is a heart-healthy trace element and dietary Se has the potential to attenuate heavy metal-induced myocardial damage in humans and animals. This study was designed to explore antagonistic effect of Se on the cardiotoxicity of mercuric chloride (HgCl2) in chickens. Hyline brown hens received a normal diet, a diet containing 250 mg/L HgCl2, or a diet containing 250 mg/L HgCl2 and 10 mg/kg Na2SeO3 for 7 weeks, respectively. Histopathological observations demonstrated that Se attenuated HgCl2-induced myocardial injury, which was further confirmed by the results of serum creatine kinase and lactate dehydrogenase levels assay and myocardial tissues oxidative stress indexes assessment. The results showed that Se prevented HgCl2-induced cytoplasmic calcium ion (Ca2+) overload and endoplasmic reticulum (ER) Ca2+ depletion mediated by Ca2+-regulatory dysfunction of ER. Importantly, ER Ca2+ depletion led to unfolded protein response and endoplasmic reticulum stress (ERS), resulting in apoptosis of cardiomyocytes via PERK/ATF4/CHOP pathway. In addition, heat shock protein expression was activated by HgCl2 through these stress responses, which was reversed by Se. Moreover, Se supplementation partially eliminated the effects of HgCl2 on the expression of several ER-settled selenoproteins, including selenoprotein K (SELENOK), SELENOM, SELENON, and SELENOS. In conclusion, these results suggested that Se alleviated ER Ca2+ depletion and oxidative stress-induced ERS-dependent apoptosis in chicken myocardium after HgCl2 exposure.


Asunto(s)
Selenio , Humanos , Animales , Femenino , Selenio/farmacología , Selenio/metabolismo , Pollos , Calcio/metabolismo , Cloruro de Mercurio/toxicidad , Cloruro de Mercurio/metabolismo , Apoptosis , Miocardio , Retículo Endoplásmico , Estrés del Retículo Endoplásmico , Cardiotoxicidad/metabolismo
2.
J Clin Nurs ; 32(15-16): 5160-5172, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36597215

RESUMEN

AIMS AND OBJECTIVES: To develop a conceptual framework that explores the process of building family resilience among Chinese families with children diagnosed with leukaemia. BACKGROUND: The diagnosis of childhood leukaemia has a devastating effect on the family. Nonetheless, some families were able to positively respond to the crisis. The process through which Chinese families bounce back has received little attention. DESIGN: Grounded theory. METHODS: This study used purposive and theoretical sampling to select 16 parents who agreed to participate in semistructured interviews after children were diagnosed with leukaemia. Data collection and analysis occurred simultaneously. Data were analysed through a process of open, axial and selective coding. The COREQ checklist was followed for reporting. RESULTS: A core category of 'finding family resilience in adversity' was generated. The core category was underpinned by a transition process between two fluid stages: (a) Disrupting the family system, informed by subcategories of negative emotional disturbances and challenges of the diagnosis and treatment journey; (b) Cultivating resilience in families, informed by subcategories of increasing positive attitudes; establishing new family routines; activating good support systems; and practising open family communication. CONCLUSIONS: The transition process from the disruption of the family system to the cultivation of family resilience is perceived as a complex family dynamic in response to childhood leukaemia. Our findings can form the basis for further research about resilience-based family interventions that promote family well-being during the early stages of a childhood leukaemia diagnosis. RELEVANCE TO CLINICAL PRACTICE: It is necessary for healthcare professionals to provide essential support for families to face the challenges of diagnosis and treatment to facilitate the successful transition to family resilience. By understanding the dynamic process of developing family resilience, healthcare professionals are able to focus on these families to provide holistic care that satisfies the specific demands of family members.


Asunto(s)
Leucemia , Resiliencia Psicológica , Humanos , Niño , Teoría Fundamentada , Salud de la Familia , Familia/psicología , Investigación Cualitativa
3.
Theriogenology ; 187: 188-194, 2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35605398

RESUMEN

Mercuric chloride (HgCl2) is a well-known toxic heavy metal contaminant, which causes male reproductive function defects. Selenium (Se) has been recognized as an effective antioxidant against heavy metals-induced male reproductive toxicity. The aim of present study was to explore the potentially protective mechanism of Se on HgCl2-induced testis injury in chicken. Firstly, the results showed that Se mitigated HgCl2-induced testicular injury through increasing the blood-testis barrier (BTB) cell-junction proteins expression of occludin, zonula occludens-1 (ZO-1), connexin 43 (Cx43), and N-cadherin. Secondly, Se alleviated HgCl2-induced oxidative stress through decreasing the malondialdehyde (MDA) content and increasing the superoxidase dismutase (SOD), glutathione peroxidase (GSH-Px) activities as well as the total antioxidant capacity (T-AOC) level. Thirdly, Se inhibited the activation of p38 MAPK signaling through decreasing the proteins expression of phosphorylated-p38 (p-p38) and phosphorylated-ATF2 (p-ATF2), and alleviated inflammation response through decreasing the proteins expression of inducible nitric oxide synthase (iNOS), nuclear factor kappa B (NF-κB), tissue necrosis factor-alpha (TNF-α), and cyclooxygenase 2 (COX2). Collectively, these results demonstrated that Se effectively alleviated HgCl2-induced testes injury via improving antioxidant capacity to reduce inflammation mediated by p38 MAPK/ATF2/iNOS signaling pathway in chicken. Our data shed a new light on potential mechanisms of Se antagonized HgCl2-induced male reproductive toxicity.


Asunto(s)
Cloruro de Mercurio , Selenio , Animales , Antioxidantes/farmacología , Pollos/fisiología , Inflamación/metabolismo , Inflamación/veterinaria , Masculino , Cloruro de Mercurio/metabolismo , Cloruro de Mercurio/toxicidad , Óxido Nítrico Sintasa de Tipo II/metabolismo , Estrés Oxidativo , Selenio/farmacología , Transducción de Señal , Testículo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
4.
Environ Toxicol ; 37(5): 1047-1057, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-34995020

RESUMEN

Mercury (Hg) is a persistent environmental and industrial pollutant that accumulated in the body and induces oxidative stress and inflammation damage. Selenium (Se) has been reported to antagonize immune organs damage caused by heavy metals. Here, we aimed to investigate the prevent effect of Se on mercuric chloride (HgCl2 )-induced thymus and bursa of Fabricius (BF) damage in chickens. The results showed that HgCl2 caused immunosuppression by reducing the relative weight, cortical area of the thymus and BF, and the number of peripheral blood lymphocytes. Meanwhile, HgCl2 induced oxidative stress and imbalance in cytokines expression in the thymus and BF. Further, we found that thioredoxin-interacting protein (TXNIP) and the NOD-like receptor pyrin domain containing 3 (NLRP3) inflammasome mediated HgCl2 -induced oxidative stress and inflammation. Mechanically, the targeting and inhibitory effect of microRNA (miR)-135b/183 on forkhead box O1 (FOXO1) were an upstream event for HgCl2 -activated TXNIP/NLRP3 inflammasome pathway. Most importantly, Se effectively attenuated the aforementioned damage in the thymus and BF caused by HgCl2 and inhibited the TXNIP/NLRP3 inflammasome pathway by reversing the expression of FOXO1 through inhibiting miR-135b/183. In conclusion, the miR-135b/183-FOXO1/TXNIP/NLRP3 inflammasome axis might be a novel mechanism for Se to antagonize HgCl2 -induced oxidative stress and inflammation in the central immune organs of chickens.


Asunto(s)
MicroARNs , Selenio , Animales , Pollos/metabolismo , Inflamasomas/metabolismo , Cloruro de Mercurio/toxicidad , MicroARNs/genética , MicroARNs/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Selenio/farmacología
5.
Biol Trace Elem Res ; 200(6): 2857-2865, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34436752

RESUMEN

Mercury (Hg) is a heavy metal widely distributed in ecological environment, poisoning the immune system of humans and animals. Selenium (Se) is an essential microelement and selenoproteins involved in the procedure of Se antagonizing organ toxicity induced by heavy metals. The aim of this research was to investigate the changes of gene expression profile of selenoproteins induced by mercuric chloride (HgCl2) in chicken spleen lymphocytes. We established cytotoxicity model of chicken spleen lymphocytes by HgCl2 exposure, the messenger RNA (mRNA) expression levels of 25 selenoproteins in spleen lymphocytes were analyzed by real-time quantitative PCR (qPCR), and the gene expression pattern of selenoproteins was revealed by principal component analysis (PCA). The results showed that the mRNA expression levels of 13 selenoproteins (GPX3, GPX4, TXNRD2, TXNRD3, DIO2, SELENOS, SELENON, SELENOT, SELENOO, SELENOP, SELENOP2, MSRB1, and SEPHS2) were decreased in HgCl2 treatment group, and there was strong positive correlation between these selenoproteins and component 1 as well as component 2 of the PCA. At the same time, the protein expression levels of GPX4, TXNRD1, TXNRD2, SELENOM, SELENOS, and SELENON were detected by Western blotting, which were consistent with the changes of gene expression. The results showed that the expression levels of selenoproteins were aberrant in response to HgCl2 toxicity. The information presented in this study provided clues for further research on the interaction between HgCl2 and selenoproteins, and the possible mechanism of immune organ toxicity induced by HgCl2.


Asunto(s)
Cloruro de Mercurio , Selenio , Animales , Pollos/metabolismo , Linfocitos/metabolismo , Cloruro de Mercurio/toxicidad , ARN Mensajero/genética , Selenio/metabolismo , Selenio/farmacología , Selenoproteínas/genética , Selenoproteínas/metabolismo , Bazo/metabolismo , Transcriptoma
6.
Biosci Rep ; 41(6)2021 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-34036306

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Gualou Xiebai Banxia (GLXBBX) decoction is a well-known traditional Chinese herbal formula that was first discussed in the Synopsis of the Golden Chamber by Zhang Zhongjing in the Eastern Han Dynasty. In traditional Chinese medicine, GLXBBX is commonly prescribed to treat cardiovascular diseases, such as coronary heart disease and atherosclerosis. OBJECTIVE: The present study aimed to examine GLXBBX's preventative capacity and elucidate the potential molecular mechanism of Poloxamer 407 (P407)-induced hyperlipidemia in rats. MATERIALS AND METHODS: Both the control and model groups received pure water, and the test group also received a GLXBBX decoction. For each administration, 3 ml of the solution was administered orally. To establish hyperlipidemia, a solution mixed with 0.25 g/kg P407 dissolved in 0.9% normal saline was injected slowly into the abdominal cavity. At the end of the study, the rats' plasma lipid levels were calculated using an automatic biochemical analyzer to evaluate the preventative capability of the GLXBBX decoction, and the serum and liver of the rats were collected. RESULTS: The GLXBBX decoction significantly improved P407-induced hyperlipidemia, including increased plasma triglycerides (TGs), aspartate aminotransferase (AST) elevation, and lipid accumulation. Moreover, GLXBBX decoction treatment increased lipoprotein lipase (LPL) activity and mRNA expression of LPL. Furthermore, GLXBBX significantly suppressed the mRNA expression of stearoyl-CoA desaturase (SCD1). CONCLUSION: GLXBBX significantly improved P407-induced hyperlipidemia, which may have been related to enhanced LPL activity, increased LPL mRNA expression, and decreased mRNA expression of SCD1.


Asunto(s)
Medicamentos Herbarios Chinos/farmacología , Hiperlipidemias/prevención & control , Hipolipemiantes/farmacología , Lípidos/sangre , Animales , Biomarcadores/sangre , Modelos Animales de Enfermedad , Hiperlipidemias/sangre , Hiperlipidemias/inducido químicamente , Lipoproteína Lipasa/genética , Lipoproteína Lipasa/metabolismo , Masculino , Poloxámero , Ratas Wistar , Estearoil-CoA Desaturasa/genética , Estearoil-CoA Desaturasa/metabolismo
7.
Res Vet Sci ; 133: 4-11, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-32916514

RESUMEN

Kidney is a primary target organ for mercuric chloride (HgCl2) toxicity. Selenium (Se) can exert antagonistic effect on heavy metals-induced organ toxicity by regulating the expression of selenoproteins. The objective of this study was to investigate the effect of HgCl2 on the gene expression of selenoproteins in chicken kidney. Sixty male Hyline brown chickens were randomly and evenly divided into two groups. After acclimatization for one week, chickens were provided with the standard diet as well as non-treated water (CON group), and standard diet as well as HgCl2-treated water (250 ppm, HgCl2 group). After seven weeks, kidney tissues were collected to examine the mRNA expression levels of 25 selenoproteins genes and protein expression levels of 4 selenoproteins. Moreover, correlation analysis and principal component analysis (PCA) were used to analyze the expression patterns of 25 selenoproteins. The results showed that HgCl2 exposure significantly decreased the mRNA expression of Glutathione peroxidase 1 (GPX1), GPX4, Thioredoxin reductase 2 (TXNRD2), Iodothyronine deiodinase 1 (DIO1), Methionine-Rsulfoxide reductase 1 (SELR), 15-kDa selenoprotein (SEP15), selenoprotein I (SELI), SELK, SELM, SELN, SELP, SELS, SELT, SELW, and SEPHS2. Meanwhile, HgCl2 exposure significantly increased the mRNA expression of GPX3, TXNRD1, and SELU. Western blot analysis showed that the expression levels of GPX3, TXNRD1, SELK, and SELN were concordant with these mRNA expression levels. Analysis results of selenoproteins expression patterns showed that HgCl2-induced the main disorder expression of selenoproteins with antioxidant activity and endoplasmic reticulum resident selenoproteins. In conclusion, selenoproteins respond to HgCl2 exposure in a characteristic manner in chicken kidney.


Asunto(s)
Pollos , Riñón/efectos de los fármacos , Cloruro de Mercurio/toxicidad , Selenoproteínas/metabolismo , Animales , Western Blotting/veterinaria , Pollos/genética , Pollos/metabolismo , Riñón/metabolismo , Masculino , Análisis por Micromatrices/veterinaria , Análisis de Componente Principal , ARN Mensajero/genética , Distribución Aleatoria , Reacción en Cadena en Tiempo Real de la Polimerasa/veterinaria , Selenio/farmacología , Selenoproteínas/genética , Transcriptoma
8.
Zhongguo Fei Ai Za Zhi ; 20(1): 47-54, 2017 Jan 20.
Artículo en Chino | MEDLINE | ID: mdl-28103973

RESUMEN

BACKGROUND: National Comprehensive Cancer Network (NCCN) guidelines recommend video-assisted thoracoscopic surgery (VATS) anatomical lobectomy as the first choice for the treatment of resectable lung cancer. However, sublobar resection offers significantly better functional preservation compared with lobectomy for stage I lung cancer. At present, the inferiority of sublobar resection to lobectomy is still uncertain. Herein, we compared the prognoses of these two types of surgical treatment for stage I lung adenocarcinoma. METHODS: Retrospective research was conducted on 258 patients with stage I lung adenocarcinomas who underwent VATS lobectomy and sublobar resection at the First Affiliated Hospital of Guangzhou Medical University between January 2009 and December 2011. VATS lobectomy was performed on 222 patients, and VATS sublobe resection was performed on 36 patients. Propensity score matching analyses were conducted on the two groups. RESULTS: A total of 70 patients were matched in the two groups. No significant difference was observed between the lobectomy and sublobar resection groups after matching (P=0.137). The disease-free survival (DFS) of the two groups were 49.3 and 42.7 months, and their overall survival (OS) were 50.3 and 49.0 months (P=0.122). Further, stratified analysis showed no significant differences in DFS and OS between the two groups with stage Ia lung adenocarcinoma. Nevertheless, the DFS and OS of the two groups significantly differed in matched patients with stage Ib lung adenocarcinomas. CONCLUSIONS: Sublobar resection could achieve a similar prognosis to VATS lobectomy for stage Ia lung adenocarcinoma. Lobectomy should still be the first choice for the treatment of stage Ib lung adenocarcinoma.


Asunto(s)
Adenocarcinoma/patología , Adenocarcinoma/cirugía , Neoplasias Pulmonares/patología , Neoplasias Pulmonares/cirugía , Puntaje de Propensión , Cirugía Torácica Asistida por Video , Adenocarcinoma del Pulmón , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Estimación de Kaplan-Meier , Masculino , Persona de Mediana Edad , Estadificación de Neoplasias , Modelos de Riesgos Proporcionales , Estudios Retrospectivos , Resultado del Tratamiento , Adulto Joven
9.
Artículo en Chino | MEDLINE | ID: mdl-27255049

RESUMEN

OBJECTIVE: To study the effect of nano-SiO2 on spatial learning and memory. METHODS: Twenty-four male rats were randomly divided into 3 groups: control group (C group), low dose group (L group) and high dose group (H group). The rats were intragastrically administrated with nanometer particles at 25 and 100 mg/kg body weight every day for 4 weeks. After exposure, the ability of learning and memory of rats was tested by Morris water maze, and electrophysiological brain stereotactic method was used to test long-tear potentiation (LTP) in dentate gyrus (DG) of the rats. RESULTS: The increase rate of body weight in H group was reduced significantly compared with C group ( P < 0.05). In the space exploration experiment of Morris water maze test, the escape latency of H group was longer than that of C group (P < 0.05). The rats of H group spent less time in finding the target quadrant (P < 0.05) . The rate of LP induction of H group was significantly lower than that of C group (P < 0.05). After high fre quency stimulation (HFS), The changes of amplitude of population spike (PS) of L group and H group were lower than those of C group significantly (P < 0.05, P < 0.01). CONCLUSION: Nano-SiO2may result in impairment of spatial learning and memory ability by reducing the rate of LTP induction and the increase of PS in hippocampus.


Asunto(s)
Giro Dentado/efectos de los fármacos , Potenciación a Largo Plazo/efectos de los fármacos , Memoria/efectos de los fármacos , Nanopartículas/efectos adversos , Dióxido de Silicio/efectos adversos , Aprendizaje Espacial/efectos de los fármacos , Animales , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Ratas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA