Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Altern Ther Health Med ; 29(7): 284-289, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37471665

RESUMEN

Objective: This study aimed to investigate the protective mechanisms of melatonin in an in vitro model of sepsis-induced hepatocyte injury, specifically focusing on mitophagy and mitochondrial biogenesis. Methods: In this study, we utilized lipopolysaccharide (LPS)-treated AML12 cells to establish an in vitro model of sepsis-induced hepatocyte injury. The effects of melatonin pretreatment were examined through various analyses, including assessments of oxidative stress, inflammation, mitophagy, mitochondrial biogenesis, and adenosine triphosphate (ATP) levels. Results: The results revealed that LPS-treated AML12 cells exhibited elevated levels of tumor necrosis factor (TNF)-α, interleukin (IL)-6 protein, intracellular reactive oxygen species (ROS), and lipid peroxidation, specifically malondialdehyde (MDA). Moreover, the levels of key markers associated with mitophagy, including PTEN-induced putative kinase 1 (PINK1), parkin, and LC3, were significantly increased (P < .05). Similarly, markers of mitochondrial biogenesis, such as peroxisome proliferator-activated receptor-gamma coactivator 1α (PGC-1α), nuclear respiratory factor 1 (NRF1), and mitochondrial transcription factor A (TFAM), were also significantly increased (P < .05). Conversely, superoxide dismutase (SOD) activity and ATP levels were significantly decreased in LPS-treated AML12 cells compared to the control group (P < .05). However, melatonin pretreatment led to a significant decrease in TNF-α and IL-6 protein levels, intracellular ROS, and MDA levels (P < .05), along with a significant increase in SOD activity, ATP levels, and markers of mitophagy and mitochondrial. Conclusions: Our findings demonstrate that melatonin plays a role in regulating mitochondrial quality control in sepsis-induced hepatocytes. It achieves this result by promoting mitophagy and inducing mitochondrial biogenesis, thereby selectively eliminating dysfunctional mitochondria.


Asunto(s)
Melatonina , Sepsis , Humanos , Melatonina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Especies Reactivas de Oxígeno/farmacología , Mitofagia , Biogénesis de Organelos , Lipopolisacáridos , Hepatocitos/metabolismo , Superóxido Dismutasa , Adenosina Trifosfato/farmacología , Sepsis/tratamiento farmacológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA