Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 83
Filtrar
Más filtros

Medicinas Complementárias
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Int J Anal Chem ; 2023: 7769368, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854347

RESUMEN

The main objective of this study was to rapidly separate asiatic acid (AA), quercetin (QCN), and kaempferol (KPL) from Centella asiatica (L.) Urban using high-speed counter-current chromatography (HSCCC) in tandem with the UV detector of semipreparative high-performance liquid chromatography (Semi-Prep-HPLC) and to evaluate their potential as inhibitors of fatty acid synthetase (FAS). To efficiently prepare large amounts of AA, QCN, and KPL from Centella asiatica (L.) Urban, rapid and simple methods by HSCCC were established respectively based on the partition coefficients (K values) of crude samples. The conditions of HSCCC-Semi-Prep-HPLC for the large-scale separation of AA, QCN, and KPL from Centella asiatica (L.) Urban were established and optimized. This included selecting the solvent system, flow rate, rotation speed, and so on. HSCCC-Semi-Prep-HPLC was successfully applied to separate and purify AA, QCN, and KPL, with n-hexane-n-butanol-methanol-water (3 : 1 : 3 : 3, V : V : V : V) as the solvent system for AA, which was detected at a wavelength of 210 nm with the stationary phase retention of 70%, and with n-hexane-ethyl acetate-methanol-water (0.8 : 0.9 : 1.2 : 1, V : V : V : V) as the solvent system for the co-separation of QCN and KPL, which was detected at a wavelength of 254 nm with the stationary phase retention of 65%. AA could be isolated at a large scale with high purity (>91.0%) in only one-step HSCCC-Semi-Prep-HPLC separation (within 150 min) under the optimized conditions. Meanwhile, QCN and KPL could be simultaneously isolated at a large scale with high purity (>99.1%) by another one-step HSCCC-Semi-Prep-HPLC separation (within 240 min) under the optimized conditions. The assessment of inhibition potential revealed that AA exhibited the strongest inhibitory effect on FAS, with an IC50 of 9.52 ± 0.76 µg/mL. Madecassic acid (MA) followed closely with IC50 values of 10.84 ± 0.92 µg/mL. QCN and KPL showed similar and relatively weaker inhibitory effects on FAS, with IC50 values of 43.09 ± 2.98 µg/mL and 36.90 ± 1.83 µg/mL, respectively. Overall, the HSCCC-Semi-Prep-HPLC method proved to be a highly efficient and reliable technique for separating AA, QCN, and KPL from Centella asiatica (L.) Urban, and the isolated compounds showed potential as FAS inhibitors.

2.
Food Res Int ; 169: 112880, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37254328

RESUMEN

Selenium (Se) biofortification of crops has been studied to substantially improve the Se content in human dietary food intake. In the present study, Vigna radiata (mung bean) seeds were soaked in different concentrations of sodium selenite (Na2SeO3). Low concentration of selenite is conducive to seed germination and growth, and can increase the fresh weight (FW) and dry weight (DW) of sprouts. The concentration of Na2SeO3 lower than 50 mg/kg resulted in noticeable elongation in the stem and marginal elongation in root. Mung bean seeds soaked with 80 mg/kg Na2SeO3 accounted for 93.77% of organic Se after growing for about 5 days. Transcriptome data revealed that Se treatment enhances starch and sugar metabolism, along with the up-regulation of ribosomal protein and DNA synthesis related genes. Further analysis indicated that the mung bean seeds absorbed Na2SeO3 through PHT1.1 and NIP2. Se (IV) was transformed into Se (VI) and transported to stems, leaves and roots through cotyledons during the germination of bean sprouts. SULTR3;3 may play an important role in the transit process. Se (VI) or Se (IV) transported to the leaves was catalytically transformed into SeCys through SiR and CS, and SeCys is further converted to MeSeCys through SMT. Most SeCys were transformed into SeHCys through CBL, transported to plastids, and finally transformed into SeMet through Met Synthase.


Asunto(s)
Fabaceae , Selenio , Vigna , Humanos , Vigna/genética , Ácido Selenioso , Transcriptoma
3.
IUCrJ ; 10(Pt 3): 329-340, 2023 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-37079399

RESUMEN

Hesperetin (HES) is a weakly acidic flavonoid of topical interest owing to its antiviral properties. Despite the presence of HES in many dietary supplements, its bioavailability is hindered by poor aqueous solubility (1.35 µg ml-1) and rapid first-pass metabolism. Cocrystallization has evolved as a promising approach to generate novel crystal forms of biologically active compounds and enhance the physicochemical properties without covalent modification. In this work, crystal engineering principles were employed to prepare and characterize various crystal forms of HES. Specifically, two salts and six new ionic cocrystals (ICCs) of HES involving sodium or potassium salts of HES were studied using single-crystal X-ray diffraction (SCXRD) or powder X-ray diffraction and thermal measurements. Structures of seven of the new crystalline forms were elucidated by SCXRD, which revealed two families of isostructural ICCs in terms of their crystal packing and confirmed the presence of phenol...phenolate (PhOH...PhO-) supramolecular heterosynthons. Diverse HES conformations were observed amongst these structures, including unfolded and folded (previously unreported) conformations. One ICC, HES with the sodium salt of HES (NESNAH), was scalable to the gram scale and found to be stable after accelerated stability testing (exposure to elevated heat and humidity). HESNAH reached Cmax after 10 min in PBS buffer 6.8 compared with 240 min in pure HES. In addition, relative solubility was observed to be 5.5 times greater, offering the possibility of improved HES bioavailability.

4.
Molecules ; 28(3)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36771062

RESUMEN

It is an important way for healthy Selenium (Se) supplement to transform exogenous Se into organic Se through crops. In the present study, Vigna unguiculata was selected as a test material and sprayed with biological nano selenium (SeNPs) and Na2SeO3, and its nutrient composition, antioxidant capacity, total Se and organic Se content were determined, respectively. Further, the response of ABC transporter family members in cowpea to different exogenous Se treatments was analyzed by transcriptome sequencing combined with different Se forms. The results show that the soluble protein content of cowpea increased after twice Se treatment. SeNPs treatment increased the content of cellulose in cowpea pods. Na2SeO3 treatment increased the content of vitamin C (Vc) in cowpea pods. Se treatments could significantly increase the activities of Peroxidase (POD), polyphenol oxidase (PPO) and catalase (CAT) in cowpea pods and effectively maintain the activity of Superoxide dismutase (SOD). SeNPs can reduce the content of malondialdehyde (MDA) in pods. After Se treatment, cowpea pods showed a dose-effect relationship on the absorption and accumulation of total Se, and Na2SeO3 treatment had a better effect on the increase of total Se content in cowpea pods. After treatment with SeNPs and Na2SeO3, the Se species detected in cowpea pods was mainly SeMet, followed by MeSeCys. Inorganic Se can only be detected in the high concentration treatment group. Analysis of transcriptome data of cowpea treated with Se showed that ABC transporters could play an active role in response to Se stress and Se absorption, among which ABCB, ABCC and ABCG subfamilies played a major role in Se absorption and transportation in cowpea. Further analysis by weighted gene co-expression network analysis (WGCNA) showed that the content of organic Se in cowpea treated with high concentration of SeNPs was significantly and positively correlated with the expression level of three transporters ABCC11, ABCC13 and ABCC10, which means that the ABCC subfamily may be more involved in the transmembrane transport of organic Se in cells.


Asunto(s)
Selenio , Vigna , Selenio/farmacología , Vigna/genética , Vigna/metabolismo , Antioxidantes/farmacología , Vitaminas/farmacología , Valor Nutritivo
5.
Chemosphere ; 310: 136865, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36244422

RESUMEN

Castor cake is a major by-product generated after castor oil extraction and has been widely used as an organic fertilizer. Once applied to soil, a toxic alkaloid ricinine in castor cake may be released into soils and subsequently taken up by crops, which poses a potential threat to food safety and human health. However, the environmental fate of castor cake derived ricinine in agroecosystems remains unclear. In this study, the release and metabolism of ricinine in soils were conducted using soil pot experiments with different castor cake application rates. The analytical methodology of ricinine quantification in soil pore water was first established using solid phase extraction (SPE) coupled with liquid chromatography quadrupole time-of-flight mass spectrometry (LC-QTOF/MS). A non-target screening workflow associated with LC-QTOF/MS and SIRIUS platform was further developed to identify ricinine metabolites in soil pore water. After castor cake application, the ricinine concentrations in soil pore water significantly increased to 297-7990 µg L-1 at 1 day and then gradually decreased to 62.1-3460 µg L-1 at 7 days and 1.70-279 µg L-1 at 14 days for the selected two tested soils with castor cake application rates of 2, 10, and 20 g castor cake/kg soil. In addition, two ricinine metabolites R-194 and R-180 were tentatively identified and one ricinine metabolite N-demethyl-ricinin was confirmed through authentic reference standard for the first time by the developed non-target screening workflow. This study highlights the release and metabolism of toxic alkaloid ricinine in soils once applied castor cake as an organic fertilizer. Ricinine could be released into soil pore water in a short-term after castor cake application and then undergo demethylation, hydroxylation, and hydroxylation followed by methylation metabolisms over time in agroecosystems.


Asunto(s)
Alcaloides , Fertilizantes , Humanos , Fertilizantes/análisis , Suelo , Aceite de Ricino , Flujo de Trabajo , Cromatografía Liquida , Alcaloides/análisis , Espectrometría de Masas , Agua/análisis
6.
Biomolecules ; 12(12)2022 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-36551157

RESUMEN

Pueraria lobata (wild.) Ohwi is a leguminous plant and one of the traditional Chinese herbal medicines. Its puerarin extract is widely used in the pharmaceutical industry. This study reported a chromosome-level genome assembly for P. lobata and its characteristics. The genome size was ~939.2 Mb, with a contig N50 of 29.51 Mbp. Approximately 97.82% of the assembled sequences were represented by 11 pseudochromosomes. We identified that the repetitive sequences accounted for 63.50% of the P. lobata genome. A total of 33,171 coding genes were predicted, of which 97.34% could predict the function. Compared with other species, P. lobata had 757 species-specific gene families, including 1874 genes. The genome evolution analysis revealed that P. lobata was most closely related to Glycine max and underwent two whole-genome duplication (WGD) events. One was in a gamma event shared by the core dicotyledons at around 65 million years ago, and another was in the common ancestor shared by legume species at around 25 million years ago. The collinearity analysis showed that 61.45% of the genes (54,579 gene pairs) in G. max and P. lobata had collinearity. In this study, six unique PlUGT43 homologous genes were retrieved from the genome of P. lobata, and no 2-hydroxyisoflavanone 8-C-glucoside was found in the metabolites. This also revealed that the puerarin synthesis was mainly from the glycation of daidzein. The combined transcriptome and metabolome analysis suggested that two bHLHs, six MYBs and four WRKYs were involved in the expression regulation of puerarin synthesis structural genes. The genetic information obtained in this study provided novel insights into the biological evolution of P. lobata and leguminous species, and it laid the foundation for further exploring the regulatory mechanism of puerarin synthesis.


Asunto(s)
Isoflavonas , Pueraria , Pueraria/genética , Pueraria/química , Multiómica , Isoflavonas/química , Cromosomas/metabolismo
7.
J Chromatogr A ; 1685: 463590, 2022 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-36323111

RESUMEN

A reliable method for simultaneous determination of four organic selenium species by HPLC-ICP-MS was developed and implemented in determining organic selenoamino acids (Se-AAs) in selenoproteins from Lactococcus lactis (L. lactis) NZ9000. The method consisted of liberating Se-AAs from selenoproteins using ultrasound-assisted protease hydrolysis, and quantitatively detecting Se-AA speciations by HPLC-ICP-MS. After optimizations of proteolysis conditions, chromatographic conditions and determination conditions, the established method could efficiently separate the four Se-AAs, including SeCys, SeCys2, SeMeCys and SeMet within 10 min. It presented high sensitivity with the limits of detection and quantitation in the range of 0.197∼0.240 µg∙L-1 and 0.788∼0.960 µg∙L-1, respectively, good repeatability with a relative standard deviation (RSD) of less than 5%, and good recovery in the desired floating range of 90%∼105%, verifying the good accuracy. The method successfully detected four selenium species in the purified glutathione peroxidase (LlGPx) overexpressed in L. lactis NZ9000, SeCys (0.9716∼1.6784 µg∙g-1), SeCys2 (1.0695∼1.2124 µg∙g-1), SeMeCys (0.7288∼0.7984 µg∙g-1) and SeMet (1.0058∼1.9571 µg∙g-1), accounting for up to 80.14% of total selenium. There was no difference of order of magnitude in the four Se-AAs, indirectly indicating the random incorporation of selenium into selenoprotein LlGPx in L. lactis NZ9000. This work throws new light on the identification and biosynthesis of organic selenium species in selenoproteins and selenium-riched organisms like L. lactis.


Asunto(s)
Lactococcus lactis , Selenio , Cromatografía Líquida de Alta Presión/métodos , Lactococcus lactis/metabolismo , Selenio/análisis , Selenoproteínas , Espectrometría de Masas/métodos
8.
Molecules ; 27(21)2022 Nov 03.
Artículo en Inglés | MEDLINE | ID: mdl-36364373

RESUMEN

Ginkgolide is a unique terpenoid natural compound in Ginkgo biloba, and it has an important medicinal value. Proper selenium has been reported to promote plant growth and development, and improve plant quality, stress resistance, and disease resistance. In order to study the effects of exogenous selenium (Se) on the physiological growth and the content of terpene triolactones (TTLs) in G. biloba seedlings, the seedlings in this work were treated with Na2SeO3. Then, the physiological indexes, the content of the TTLs, and the expression of the related genes were determined. The results showed that a low dose of Na2SeO3 was beneficial to plant photosynthesis as it promoted the growth of ginkgo seedlings and increased the root to shoot ratio. Foliar Se application significantly increased the content of soluble sugar and protein and promoted the content of TTLs in ginkgo leaves; indeed, it reached the maximum value of 7.95 mg/g in the ninth week, whereas the application of Se to the roots inhibited the synthesis of TTLs. Transcriptome analysis showed that foliar Se application promoted the expression levels of GbMECPs, GbMECT, GbHMGR, and GbMVD genes, whereas its application to the roots promoted the expression of GbDXS and GbDXR genes. The combined analysis results of metabolome and transcriptome showed that genes such as GbDXS, GbDXR, GbHMGR, GbMECPs, and GbCYP450 were significantly positively correlated with transcription factors (TFs) GbWRKY and GbAP2/ERF, and they were also positively correlated with the contents of terpene lactones (ginkgolide A, ginkgolide B, ginkgolide M, and bilobalide). Endogenous hormones (MeJA-ILE, ETH, and GA7) were also involved in this process. The results suggested that Na2SeO3 treatment affected the transcription factors related to the regulation of endogenous hormones in G. biloba, and further regulated the expression of genes related to the terpene synthesis structure, thus promoting the synthesis of ginkgo TTLs.


Asunto(s)
Ginkgo biloba , Selenio , Ginkgo biloba/química , Terpenos/química , Reguladores del Crecimiento de las Plantas , Selenito de Sodio , Ginkgólidos/farmacología , Ginkgólidos/química , Lactonas/química , Extractos Vegetales , Factores de Transcripción , Hormonas
9.
J Nutr Biochem ; 100: 108899, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34748924

RESUMEN

A. membranaceus is a traditional Chinese medicine that regulates blood sugar levels, suppresses inflammation, protects the liver, and enhances immunity. In addition, A. membranaceus is also widely used in diet therapy and is a well-known health tonic. Formononetin is a natural product isolated from A. membranaceus that has multiple biological functions, including anti-cancer activity. However, the mechanism by which formononetin inhibits tumor growth is not fully understood. In this present study, we demonstrated that formononetin suppresses PD-L1 protein synthesis via reduction of MYC and STAT3 protein expression. Furthermore, formononetin markedly reduced the expression of MYC protein via the RAS/ERK signaling pathway and inhibited STAT3 activation through JAK1/STAT3 pathway. Co-immunoprecipitation experiments illustrated that formononetin suppresses protein expression of PD-L1 by interfering with the interaction between MYC and STAT3. Meanwhile, formononetin promoted PD-L1 protein degradation via TFEB and TFE3-mediated lysosome biogenesis. T cell killing assay revealed that formononetin could enhance the activity of cytotoxic T lymphocytes (CTLs) and restore ability to kill tumor cells in a co-culture system of T cells and tumor cells. In addition, formononetin inhibited cell proliferation, tube formation, cell migration, and promoted tumor cell apoptosis by suppressing PD-L1. Finally, the inhibitory effect of formononetin on tumor growth was confirmed in a murine xenograft model. The present study revealed the anti-tumor potential of formononetin, and the findings should support further research and development of anti-cancer drugs for cervical cancer.


Asunto(s)
Antígeno B7-H1/metabolismo , Carcinogénesis/efectos de los fármacos , Isoflavonas/farmacología , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factor de Transcripción STAT3/metabolismo , Neoplasias del Cuello Uterino/fisiopatología , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Movimiento Celular , Proliferación Celular , Técnicas de Cocultivo , Regulación hacia Abajo , Femenino , Células Endoteliales de la Vena Umbilical Humana/citología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Células Endoteliales de la Vena Umbilical Humana/fisiología , Humanos , Lisosomas/metabolismo , Biogénesis de Organelos , Proteínas Proto-Oncogénicas c-myc/genética , Factor de Transcripción STAT3/genética , Transducción de Señal , Linfocitos T/inmunología , Neoplasias del Cuello Uterino/inmunología , Ensayos Antitumor por Modelo de Xenoinjerto
10.
Molecules ; 26(23)2021 Nov 25.
Artículo en Inglés | MEDLINE | ID: mdl-34885702

RESUMEN

Selenocysteine (Sec) is the 21st non-standard proteinogenic amino acid. Due to the particularity of the codon encoding Sec, the selenoprotein synthesis needs to be completed by unique mechanisms in specific biological systems. In this paper, the underlying mechanisms for the biosynthesis and incorporation of Sec into selenoprotein were comprehensively reviewed on five aspects: (i) the specific biosynthesis mechanism of Sec and the role of its internal influencing factors (SelA, SelB, SelC, SelD, SPS2 and PSTK); (ii) the elements (SECIS, PSL, SPUR and RF) on mRNA and their functional mechanisms; (iii) the specificity (either translation termination or translation into Sec) of UGA; (iv) the structure-activity relationship and action mechanism of SelA, SelB, SelC and SelD; and (v) the operating mechanism of two key enzyme systems for inorganic selenium source flow before Sec synthesis. Lastly, the size of the translation initiation interval, other action modes of SECIS and effects of REPS (Repetitive Extragenic Palindromic Sequences) that affect the incorporation efficiency of Sec was also discussed to provide scientific basis for the large-scale industrial fermentation for the production of selenoprotein.


Asunto(s)
Conformación de Ácido Nucleico , Selenio/química , Selenocisteína/genética , Selenoproteínas/genética , ARN Mensajero/química , ARN Mensajero/genética , Selenocisteína/biosíntesis , Selenocisteína/química , Selenoproteínas/biosíntesis , Selenoproteínas/química , Selenoproteínas/ultraestructura , Relación Estructura-Actividad
11.
Phytother Res ; 35(7): 3916-3935, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33970512

RESUMEN

The programmed cell death 1 (PD-1)/programmed death ligand 1 (PD-L1) pathway is abnormally expressed in cervical cancer cells. Moreover, PD-1/PD-L1 blockade reduces the apoptosis and exhaustion of T cells and inhibits the development of malignant tumors. Usnic acid is a dibenzofuran compound originating from Usnea diffracta Vain and has anti-inflammatory, antifungal, and anticancer activities. However, the molecular mechanism of its antitumor effects has not been fully elucidated. In this work, we first observed that usnic acid decreased the expression of PD-L1 in HeLa cells and enhanced the cytotoxicity of co-cultured T cells toward tumor cells. Usnic acid inhibited PD-L1 protein synthesis by reducing STAT3 and RAS pathways cooperatively. It was subsequently shown that usnic acid induced MiT/TFE nuclear translocation through the suppression of mTOR signaling pathways, and promoted the biogenesis of lysosomes and the translocation of PD-L1 to the lysosomes for proteolysis. Furthermore, usnic acid inhibited cell proliferation, angiogenesis, migration, and invasion, respectively, by downregulating PD-L1, thereby inhibiting tumor growth. Taken together, our results show that usnic acid is an effective inhibitor of PD-L1 and our study provide novel insights into the mechanism of its anticancer targeted therapy.


Asunto(s)
Antígeno B7-H1 , Benzofuranos/farmacología , Proliferación Celular/efectos de los fármacos , Linfocitos T/inmunología , Antígeno B7-H1/antagonistas & inhibidores , Línea Celular Tumoral , Células HeLa , Humanos , Parmeliaceae/química
12.
J Nurs Res ; 29(3): e152, 2021 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-33840769

RESUMEN

BACKGROUND: Hand massage therapies have been used to relieve anxiety and pain in various clinical situations. The effects of machine-based hand massage on preoperative anxiety in ambulatory surgery settings have not been evaluated. PURPOSE: This prospective study was designed to investigate the effect of machine-based hand massage on preoperative anxiety and vital signs in ambulatory surgery patients. METHODS: One hundred ninety-nine patients aged 18 years and older who were scheduled to receive ambulatory surgery were recruited from the Taipei Municipal Wanfang Hospital in Taipei City, Taiwan. The patients were assigned randomly to the experimental group (n = 101), which received presurgical machine-based hand massage therapy, and the control group (n = 98), which received no intervention. The patients in both groups completed the Spielberger State-Trait Anxiety Inventory short form at preintervention (baseline) and postintervention. RESULTS: Within-group comparisons of Spielberger State-Trait Anxiety Inventory short form scores showed significant decreases between preintervention and postintervention scores in the experimental group (44.3 ± 11.2 to 37.9 ± 8.7) and no significant change in the control group. Within-group comparisons of vital signs revealed a significant increase in mean respiration rate between baseline and postintervention in both groups (both ps < .05). Blood pressure was found to have decreased significantly only in the control group at postintervention (p < .05). No significant preintervention to postintervention change in pulse was observed in either group. CONCLUSIONS: The findings of this study indicate that machine-based hand massage reduces anxiety significantly in patients awaiting ambulatory surgery while not significantly affecting their vital signs.


Asunto(s)
Procedimientos Quirúrgicos Ambulatorios , Ansiedad , Mano , Ansiedad/prevención & control , Humanos , Masaje , Estudios Prospectivos
13.
Front Oncol ; 11: 630717, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33777783

RESUMEN

Although the National Comprehensive Cancer Network and the Chinese Society of Clinical Oncology guidelines recommend comprehensive genomic profiling of lung adenocarcinoma, it has not been widely applied in Chinese hospitals. This observational study aimed to determine real-world evidence of whether comprehensive genomic profiling can benefit the survival of patients with lung cancer. We investigated the frequency of genomic alterations, treatment strategies, and clinical outcomes in 233 patients with advanced non-small cell lung carcinoma who were routinely screened using a 508-gene panel. The most prevalent drivers were mutations of EGFR (51%), KRAS (9%), PIK3CA (7%), ALK (7%), MET (6%), and BRAF (5%). Mutations in tumor suppressor genes included TP53, KEAP1, RB1, PTEN, and APC. Median overall survival (OS) was significantly shorter among patients harboring KRAS (mutant, n = 17; WT, n = 154) and TP53 (mutant, n = 103; WT n =68) mutations (11.3 vs. 24.0 months; P = 0.16 and 18.7 vs. 28.7 months; P = 0.018, respectively). The OS was longer among patients with tumors harboring EGFR (P = 0.069) and ALK (P = 0.51) mutations. Most patients (65.4%) with the driver gene-positive (EGFR, ALK, and ROS1) tumors were received TKI treatment, whereas those with driver gene wild tumors (53.1%) chose platinum-based therapy. Univariate and multivariate analyses associated a shorter OS among patients with tumors harboring concomitant TP53 and EGFR mutations. These findings provide additional evidence from real-world on the potential importance of targeted therapies as a treatment option in NSCLC patients harboring clinically actionable mutation.

14.
Sci Rep ; 11(1): 1078, 2021 01 13.
Artículo en Inglés | MEDLINE | ID: mdl-33441798

RESUMEN

Sleep quality is important to health and life quality. Lack of sleep can lead to a variety of health issues and reduce in daytime function. Recent study by Fultz et al. also indicated that sleep is crucial to brain metabolism. Delta power in sleep EEG often indicates good sleep quality while alpha power usually indicates sleep interruptions and poor sleep quality. Essential oil has been speculated to improve sleep quality. Previous studies also suggest essential oil aroma may affect human brain activity when applied awake. However, those studies were often not blinded, which makes the effectiveness and mechanism of aroma a heavily debated topic. In this study, we aim to explore the effect of essential oil aroma on human sleep quality and sleep EEG in a single-blinded setup. The aroma was released when the participants are asleep, which kept the influence of psychological expectation to the minimum. We recruited nine young, healthy participants with regular lifestyle and no sleep problem. All participants reported better sleep quality and more daytime vigorous after exposing to lavender aroma in sleep. We also observed that upon lavender aroma releases, alpha wave in wake stage was reduced while delta wave in slow-wave sleep (SWS) was increased. Lastly, we found that lavender oil promote occurrence of SWS. Overall, our study results show that essential oil aroma can be used to promote both subjective and objective sleep quality in healthy human subjects. This makes aroma intervention a potential solution for poor sleep quality and insomnia.


Asunto(s)
Encéfalo/efectos de los fármacos , Aceites Volátiles/farmacología , Aceites de Plantas/farmacología , Sueño de Onda Lenta/efectos de los fármacos , Sueño/efectos de los fármacos , Encéfalo/fisiología , Electroencefalografía , Femenino , Humanos , Lavandula , Masculino , Proyectos Piloto , Método Simple Ciego , Sueño/fisiología , Sueño de Onda Lenta/fisiología , Encuestas y Cuestionarios , Adulto Joven
15.
J Ethnopharmacol ; 273: 113598, 2021 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-33220359

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Dendrobium chrysotoxum Lindl is a cultivation of Dendrobium which belongs to the family of Orchidaceae. D. chrysotoxum Lindl is a traditional Chinese medicine with a wide range of clinical applications including tonic, astringent, analgesic and anti-inflammatory properties as early as the 28th century B.C. Erianin is a representative index component for the quality control of the D. chrysotoxum Lindl, which is included in the Pharmacopoeia of the People's Republic of China (2020 version). AIM OF THE STUDY: To clarify the anti-tumour mechanisms of erianin in vitro and in vivo. MATERIALS AND METHODS: We detected the anti-tumour activity of erianin using in vitro HeLa cell models and in vivo cervical cancer xenograft models. We performed MTT, western blot, RT-PCR, homology modeling, flow cytometry, and immunoprecipitation assays to study the proteins, genes, and pathways related to erianin's anti-tumour activity. LysoTracker Red staining was performed to detect lysosome function. Transwell, wound healing, tube formation, colony formation and EdU labelling assays were performed to determine cell proliferation, migration and invasion abilities, respectively. Cytotoxic T lymphocytes ability was confirmed using HeLa/T-cell co-culture model. RESULTS: Experimental data demonstrated that erianin inhibited PD-L1 expression and induced the lysosomal degradation of PD-L1. Erianin suppressed HIF-1α synthesis through mTOR/p70S6K/4EBP1 pathway, and inhibited RAS/Raf/MEK/MAPK-ERK pathway. Immunoprecipitation experiments demonstrated that erianin reduced the interaction between RAS and HIF-1α. Experiments using a co-cultivation system of T cells and HeLa cells confirmed that erianin restored cytotoxic T lymphocytes ability to kill tumour cells. Erianin inhibited PD-L1-mediated angiogenesis, proliferation, invasion and migration. The anti-proliferative effects of erianin were supported using in vivo xenotransplantation experiments. CONCLUSIONS: Collectively, these results revealed previously unknown properties of erianin and provided a new basis for improving the efficacy of immunotherapy against cervical cancer and other malignant tumours through PD-L1.


Asunto(s)
Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Bibencilos/farmacología , Inhibidores de Puntos de Control Inmunológico/farmacología , Fenol/farmacología , Linfocitos T Citotóxicos/inmunología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Bibencilos/uso terapéutico , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Transición Epitelial-Mesenquimal/efectos de los fármacos , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Inhibidores de Puntos de Control Inmunológico/uso terapéutico , Lisosomas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Neovascularización Patológica/metabolismo , Fenol/uso terapéutico , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Linfocitos T Citotóxicos/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo , Factor A de Crecimiento Endotelial Vascular/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto , Quinasas raf/metabolismo , Proteínas ras/metabolismo
16.
Phytomedicine ; 81: 153425, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33310309

RESUMEN

BACKGROUND: Programmed cell death-ligand 1 (PD-L1) is overexpressed in tumor cells, which causes tumor cells to escape T cell killing, and promotes tumor cell survival, cell proliferation, migration, invasion, and angiogenesis. Britannin is a natural product with anticancer pharmacological effects. PURPOSE: In this work, we studied the anticancer potential of britannin and explored whether britannin mediated its effect by inhibiting the expression of PD-L1 in tumor cells. METHODS: In vitro, the mechanisms underlying the inhibition of PD-L1 expression by britannin were investigated by MTT assay, homology modeling and molecular docking, RT-PCR, western blotting, co-immunoprecipitation, and immunofluorescence. The changes in tumor killing activity, cell proliferation, cell cycle, migration, invasion, and angiogenesis were analyzed by T cell killing assays, EdU labeling, colony formation, flow cytometry, wound healing, matrigel transwell invasion, and tube formation, respectively. In vivo, the antitumor activity of britannin was evaluated in the HCT116 cell xenograft model. RESULTS: Britannin reduced the expression of PD-L1 in tumor cells by inhibiting the synthesis of the PD-L1 protein but did not affect the degradation of the PD-L1 protein. Britannin also inhibited HIF-1α expression through the mTOR/P70S6K/4EBP1 pathway and Myc activation through the Ras/RAF/MEK/ERK pathway. Mechanistically, britannin inhibited the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. In addition, britannin could enhance the activity of cytotoxic T lymphocytes and inhibit tumor cell proliferation and angiogenesis by inhibiting PD-L1. Finally, in vivo observations were confirmed by demonstrating the antitumor activity of britannin in a murine xenograft model. CONCLUSION: Britannin inhibits the expression of PD-L1 by blocking the interaction between HIF-1α and Myc. Moreover, britannin stabilizes T cell activity and inhibits proliferation and angiogenesis by inhibiting PD-L1 in cancer. The current work highlights the anti-tumor effect of britannin, providing insights into the development of cancer therapeutics via PD-L1 inhibition.


Asunto(s)
Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Lactonas/farmacología , Neovascularización Patológica/tratamiento farmacológico , Proteína 2 Ligando de Muerte Celular Programada 1/metabolismo , Sesquiterpenos/farmacología , Linfocitos T/efectos de los fármacos , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Antineoplásicos Fitogénicos/farmacología , Proteínas de Ciclo Celular/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Células HCT116 , Humanos , Lactonas/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones Endogámicos BALB C , Ratones Desnudos , Simulación del Acoplamiento Molecular , Neovascularización Patológica/metabolismo , Proteína 2 Ligando de Muerte Celular Programada 1/química , Proteína 2 Ligando de Muerte Celular Programada 1/genética , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Sesquiterpenos/química , Linfocitos T/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Ensayos Antitumor por Modelo de Xenoinjerto
17.
J Ethnopharmacol ; 258: 112931, 2020 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-32360797

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Medicinal plants are used in the management of Human Immunodeficiency Virus and Acquired Immunodeficiency Syndrome (HIV/AIDS) in many developing country settings where HIV-1 subtype C drives the epidemic. Efforts to identify plant derived molecules with anti-HIV properties require reproducible assay systems for routine screening of selected plant compounds. Although a number of standardized HIV-1 pseudoviruses have been generated to assess infectivity, replicability or reproducibility, HIV-1 subtype C (HIV-1-C) pseudoviruses have not been comprehensively characterized to identify inhibitory plant substances. AIM OF THE STUDY: The current study aimed at developing an HIV-1-C pseudovirus assay, and evaluate plant substances targeting reverse transcriptase (RT) activity. MATERIALS AND METHODS: HIV-1 subtype C pseudoviruses containing a luciferase reporter gene were generated by transfection of human 293T cells. HIV-1 subtype B (HIV-1-B) wild type pseudoviruses and mutants resistant to nucleoside and non-nucleoside RT inhibitors were also generated and used as controls. Selected plant substances and the RT inhibitors Zidovudine (AZT) and Nevirapine (NVP), were used to evaluate inhibition. Pseudovirus infectivity was determined by luciferase measurement in CF2/CD4+/CCR5 cells, and cytotoxicity was determined using the MTT assay. AZT and NVP inhibited wild type pseudoviruses in a dose dependent manner, with IC50 values in the nanomolar range. RESULTS: Pseudoviruses harbouring RT drug resistance mutations were poorly suppressed by AZT and NVP. Catechin, obtained from Peltophorum africanum inhibited HIV-1-C and HIV-1-B pseudoviruses with selective indices of 6304 µM (IC50: 0.49 µM, CC50: 3089 µM) and 1343 µM (IC50: 2.3 µM, CC50: 3089 µM), respectively; while the methanol root crude extract of Elaeodendron transvaalense gave IC50 values of 11.11 µg/ml and 16.86 µg/ml, respectively. CONCLUSION: The developed HIV-1-C pseudovirus assay can be used to screen plant substances for RT inhibition, and may have utility in settings with limited access to high level biosafety facilities.


Asunto(s)
Fármacos Anti-VIH/farmacología , Transcriptasa Inversa del VIH/antagonistas & inhibidores , VIH-1/efectos de los fármacos , Preparaciones de Plantas/farmacología , Inhibidores de la Transcriptasa Inversa/farmacología , Fármacos Anti-VIH/administración & dosificación , Relación Dosis-Respuesta a Droga , Células HEK293 , Infecciones por VIH/tratamiento farmacológico , Infecciones por VIH/virología , VIH-1/enzimología , Humanos , Concentración 50 Inhibidora , Nevirapina/administración & dosificación , Nevirapina/farmacología , Preparaciones de Plantas/administración & dosificación , Plantas Medicinales/química , Reproducibilidad de los Resultados , Inhibidores de la Transcriptasa Inversa/administración & dosificación , Zidovudina/administración & dosificación , Zidovudina/farmacología
18.
J Ethnopharmacol ; 257: 112835, 2020 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-32278762

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Curcuma wenyujin is a Chinese traditional herbal medicine that is commonly used as an anti-oxidant, anti-proliferative, and anti-tumorigenic agent. Curcumol is a representative index component for the quality control of the essential oil of Curcuma wenyujin, which is currently used as an anti-cancer drug, and is included in the State Pharmacopoeia Commission of the People's Republic of China (2005). However, the mechanisms of action and molecular functions of curcumol are not yet fully elucidated. AIM OF THE STUDY: This study aimed to identify new effects of curcumol from the perspective of cancer immunotherapy. MATERIALS AND METHODS: The underlying mechanism of the inhibition of programmed cell death-ligand 1 (PD-L1) activation by curcumol was investigated in vitro via homology modeling, molecular docking experiments, luciferase reporter assays, MTT assays, RT-PCR, western blotting, and immunofluorescence assays. Changes in cellular proliferation, angiogenesis, and the tumor-killing activity of T-cells were analyzed via EdU labeling, colony formation, flow cytometry, wound-healing, Matrigel Transwell invasion, tube formation, and T-cell killing. The anti-tumor activity of curcumol was assessed in vivo in a murine xenograft model using Hep3B cells. RESULTS: Curcumol reduced the expression of phosphorylated signal transducer and activator of transcription 3 (p-STAT3) via JAK1, JAK2, and Src pathways and inhibited hypoxia-inducible factor-1α (HIF-1α) protein synthesis via mTOR/p70S6K/eIF4E and MAPK pathways. Furthermore, we revealed crosstalk between STAT3 and HIF-1α pathways, which collaboratively regulated PD-L1 activation, and that curcumol played a role in this regulation. Curcumol inhibited cell proliferation, S-phase progression, tube formation, invasion, and metastasis by inhibiting PD-L1. In addition, curcumol restored the activity of cytotoxic T-cells and their capacity for tumor cell killing by inhibiting PD-L1. In vivo experiments confirmed that curcumol inhibited tumor growth in a xenograft model. CONCLUSIONS: These results illustrated that curcumol inhibits the expression of PD-L1 through crosstalk between HIF-1α and p-STAT3 (T705) signaling pathways in hepatic cancer. Thus, curcumol might represent a promising lead compound for the development of new targeted anti-cancer therapeutics.


Asunto(s)
Antígeno B7-H1/metabolismo , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/metabolismo , Factor de Transcripción STAT3/metabolismo , Sesquiterpenos/farmacología , Células A549 , Animales , Línea Celular Tumoral , Células HeLa , Xenoinjertos , Células Endoteliales de la Vena Umbilical Humana , Humanos , Janus Quinasa 2 , Masculino , Ratones , Ratones Desnudos , Quinasas de Proteína Quinasa Activadas por Mitógenos/metabolismo , Neovascularización Patológica/tratamiento farmacológico , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal/efectos de los fármacos , Linfocitos T/efectos de los fármacos , Serina-Treonina Quinasas TOR/metabolismo
19.
Pharmacol Res ; 155: 104727, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32113874

RESUMEN

Panaxadiol is a triterpenoid sapogenin monomeric compound found in the roots of Panax ginseng and has a variety of biological activities such as neuroprotective and anti-tumour functions. However, the mechanisms how panaxadiol exerts the anticancer effects remain unknown. The current study aimed to investigate the potential activity of panaxadiol on programmed cell death-ligand 1 (PD-L1) expression and tumour proliferation in human colon cancer cells and to identify the underlying mechanism. Results showed that panaxadiol showed little cytotoxicity as assessed by a cytotoxicity assay and significantly inhibited PD-L1 expression at the protein and mRNA level in a dose-dependent manner. Furthermore, panaxadiol supressed the hypoxia-induced synthesis of hypoxia-inducible factor (HIF)-1α via the phosphoinositide 3-kinase (PI3K) and mitogen-activated protein kinase (MAPK) pathways without affecting HIF-1α degradation. Simultaneously, panaxadiol inhibited STAT3 activation through the JAK1, JAK2, and Src pathways. Moreover, pre-treatment with panaxadiol enhanced the activity of cytotoxic T lymphocytes (CTL) and regained their capacity of tumour cell killing in a T cell and tumour cell co-culture system. Immunoprecipitation showed that panaxadiol inhibited PD-L1 expression by blocking the interaction between HIF-1α and STAT3. The inhibitory effect of panaxadiol on tumour proliferation was further demonstrated by colony formation and EdU labelling assays. The anti-proliferative effect of panaxadiol was also proved by a xenograft assay in vivo. Taken together, the current work highlights the anti-tumour effect of panaxadiol, providing insights into development of cancer therapeutic through PD-L1 inhibition.


Asunto(s)
Antineoplásicos/uso terapéutico , Neoplasias del Colon/tratamiento farmacológico , Ginsenósidos/uso terapéutico , Animales , Antineoplásicos/farmacología , Antígeno B7-H1/genética , Antígeno B7-H1/metabolismo , Línea Celular , Proliferación Celular/efectos de los fármacos , Neoplasias del Colon/inmunología , Neoplasias del Colon/metabolismo , Ginsenósidos/farmacología , Humanos , Subunidad alfa del Factor 1 Inducible por Hipoxia/genética , Subunidad alfa del Factor 1 Inducible por Hipoxia/metabolismo , Ratones Endogámicos BALB C , Ratones Desnudos , Factor de Transcripción STAT3/genética , Factor de Transcripción STAT3/metabolismo , Linfocitos T/efectos de los fármacos , Linfocitos T/inmunología
20.
Curr Med Chem ; 27(19): 3168-3186, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-30666906

RESUMEN

Rhaponticin is a stilbenoid glucoside compound, found in medicinal plant of rhubarb rhizomes. Rhapontigenin (RHAG), the stilbene aglycone metabolite of rhaponticin, has shown various biological activities including anticancer activities to act a potential human cytochrome P450 inhibitor, antihyperlipidemic effect, anti-allergic action, antioxidant and antibacterial activities. Moreover, it was reported to scavenge intracellular Reactive Oxygen Species (ROS), the 1,1-Diphenyl-2-Picrylliydrazyl (DPPH) radical, and Hydrogen Peroxide (H2O2). Meanwhile, RHAG exhibited the inhibitory activity for the synthesis of DNA, RNA and protein, and also presented the capacity of inducing morphological changes and apoptosis of C. albicans. Here, the structure, pharmacokinetics, pharmacological effects as well as underlying mechanisms of rhaponticin and its metabolite, RHAG, have been extensively reviewed. This review will provide a certain reference value for developing the therapeutic drug of rhaponticin or RHAG.


Asunto(s)
Estilbenos/metabolismo , Proteínas Sanguíneas , Humanos , Peróxido de Hidrógeno , Glicoproteínas de Membrana
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA