Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Angew Chem Int Ed Engl ; 62(43): e202310178, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37671691

RESUMEN

Sono-immunotherapy holds great potential for deep tumor inhibition; however, smart sono-therapeutic agents to simultaneously eliminate 'domestic' tumor cells and regulate the 'community' tumor immune microenvironment have rarely been developed. Herein, we report a spatiotemporally controllable semiconducting iron-chelated nano-metallomodulator (SINM) for hypersensitive sono-metallo-immunotherapy of cancer. SINM consists of a semiconducting polymer (SP) backbone chelating iron ions (Fe3+ ) with thiophene-based Schiff base structure, and a hydrophilic side chain. Upon accumulation in tumors after systemic administration, SINM specifically arouses ferroptosis and M1 macrophage polarization due to its response toward the tumor redox environment; meanwhile, the chelation of Fe3+ enhances the sono-sensitizing effect of SPs, leading to enhanced generation of reactive oxygen species for immunogenic cell death. Such combined sonodynamic metallo-immunotherapy of SINM efficiently ablates deep tumor and spatiotemporally regulates immunophenotypes.


Asunto(s)
Quelantes del Hierro , Neoplasias , Humanos , Quelantes del Hierro/farmacología , Quelantes del Hierro/uso terapéutico , Factores Inmunológicos , Adyuvantes Inmunológicos , Neoplasias/tratamiento farmacológico , Inmunoterapia , Hierro , Línea Celular Tumoral , Microambiente Tumoral
2.
Angew Chem Int Ed Engl ; 61(8): e202114957, 2022 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-34927316

RESUMEN

Protease inhibitors can modulate intratumoral metabolic processes to reprogram the immunosuppressive tumor microenvironment (TME), which however suffer from the limited efficacy and off-targeted side effects. We report smart nano-proteolysis targeting chimeras (nano-PROTACs) with phototherapeutic ablation and cancer-specific protein degradation to reprogram the TME for photo-metabolic cancer immunotherapy. This nano-PROTAC has a semiconducting polymer backbone linked with a cyclooxygenase 1/2 (COX-1/2)-targeting PROTAC peptide (CPP) via a cathepsin B (CatB)-cleavable segment. CPP can be activated by the tumor-overexpressed CatB to induce the degradation of COX-1/2 via the ubiquitin-proteasome system. The persistent degradation of COX-1/2 depletes their metabolite prostaglandin E2 which is responsible for activation of immune suppressor cells. Such a smart PROTAC strategy synergized with phototherapy specifically reprograms the immunosuppressive TME and reinvigorates antitumor immunity.


Asunto(s)
Antineoplásicos/farmacología , Ciclooxigenasa 1/metabolismo , Ciclooxigenasa 2/metabolismo , Inmunoterapia , Neoplasias/terapia , Péptidos/farmacología , Fármacos Fotosensibilizantes/farmacología , Antineoplásicos/química , Antineoplásicos/metabolismo , Catepsina B/metabolismo , Dinoprostona/metabolismo , Humanos , Neoplasias/metabolismo , Péptidos/química , Péptidos/metabolismo , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/metabolismo , Fototerapia , Proteolisis/efectos de los fármacos , Microambiente Tumoral/efectos de los fármacos
3.
ACS Appl Mater Interfaces ; 12(5): 5286-5299, 2020 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-31730329

RESUMEN

Cancer theranostics, which combines diagnostic and therapeutic effects into one entity, holds promise in precision medicine. Conventional theranostic agents possess always-on imaging signals and cytotoxic effects and thus often encounter poor selectivity or specificity in cancer treatment. To tackle this issue, activatable phototheranostic materials (PMs) have been developed to simultaneously and specifically turn on their diagnostic signals (fluorescence/self-luminescence/photoacoustic signals) and photothermal/photodynamic effects in response to cancer hallmarks. This Review summarizes the recent progress in the design, synthesis and proof-of-concept applications of activatable PMs. The molecular engineering strategy to increase tumor accumulation and enhance treatment efficacy are highlighted. Current challenges and future perspectives in this emerging field are also discussed.


Asunto(s)
Neoplasias/terapia , Fármacos Fotosensibilizantes/química , Nanomedicina Teranóstica , Animales , Antioxidantes/química , Antioxidantes/metabolismo , Humanos , Nanoestructuras/química , Neoplasias/diagnóstico por imagen , Fotoquimioterapia , Fármacos Fotosensibilizantes/uso terapéutico , Fototerapia , Especies Reactivas de Oxígeno/metabolismo
4.
Small ; 15(1): e1804105, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30457701

RESUMEN

Phototherapy including photothermal therapy (PTT) and photodynamic therapy (PDT) employs phototherapeutic agents to generate heat or cytotoxic reactive oxygen species (ROS), and has therefore garnered particular interest for cancer therapy. However, the main challenges faced by conventional phototherapeutic agents include easy recognition by the immune system, rapid clearance from blood circulation, and low accumulation in target sites. Cell-membrane coating has emerged as a potential way to overcome these limitations, owing to the abundant proteins on the surface of cell membranes that can be inherited to the cell membrane-camouflaged nanoparticles. This review summarizes the recent advances in the development of biomimetic cell membrane-camouflaged nanoparticles for cancer phototherapy. Different sources of cell membranes can be used to coat nanoparticles uisng different coating approaches. After cell-membrane coating, the photophysical properties of the original phototherapeutic nanoparticles remain nearly unchanged; however, the coated nanoparticles are equipped with additional physiological features including immune escape, in vivo prolonged circulation time, or homologous targeting, depending on the cell sources. Moreover, the coated cell membrane can be ablated from phototherapeutic nanoparticles under laser irradiation, leading to drug release and thus synergetic therapy. By combining other supplementary agents to normalize tumor microenvironment, cell-membrane coating can further enhance the therapeutic efficacy against cancer.


Asunto(s)
Membrana Celular/química , Nanopartículas/uso terapéutico , Neoplasias/terapia , Fototerapia , Animales , Humanos , Nanopartículas/ultraestructura , Tamaño de la Partícula , Electricidad Estática
5.
Biomater Sci ; 6(4): 746-765, 2018 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-29485662

RESUMEN

Phototherapies including photothermal therapy (PTT) and photodynamic therapy (PDT) have gained considerable attention due to their high tumor ablation efficiency, excellent spatial resolution and minimal side effects on normal tissue. In contrast to inorganic nanoparticles, near-infrared (NIR) absorbing organic nanoparticles bypass the issue of metal-ion induced toxicity and thus are generally considered to be more biocompatible. Moreover, with the guidance of different kinds of imaging methods, the efficacy of cancer phototherapy based on organic nanoparticles has shown to be optimizable. In this review, we summarize the synthesis and application of NIR-absorbing organic nanoparticles as phototherapeutic nanoagents for cancer phototherapy. The chemistry, optical properties and therapeutic efficacies of organic nanoparticles are firstly described. Their phototherapy applications are then surveyed in terms of therapeutic modalities, which include PTT, PDT and PTT/PDT combined therapy. Finally, the present challenges and potential of imaging guided PTT/PDT are discussed.


Asunto(s)
Nanoestructuras/química , Fotoquimioterapia/métodos , Espectroscopía Infrarroja Corta/métodos , Animales , Humanos , Nanoestructuras/uso terapéutico , Fármacos Fotosensibilizantes/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA