Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
BMC Genomics ; 17: 23, 2016 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-26728635

RESUMEN

BACKGROUND: Legumes are important to humans by providing food, feed and raw materials for industrial utilizations. Some legumes, such as alfalfa, are potential bioenergy crops due to their high biomass productivity. Global transcriptional profiling has been successfully used to identify genes and regulatory pathways in secondary cell wall thickening in Arabidopsis, but such transcriptome data is lacking in legumes. RESULTS: A systematic microarray assay and high through-put real time PCR analysis of secondary cell wall development were performed along stem maturation in Medicago truncatula. More than 11,000 genes were differentially expressed during stem maturation, and were categorized into 10 expression clusters. Among these, 279 transcription factor genes were correlated with lignin/cellulose biosynthesis, therefore representing putative regulators of secondary wall development. The b-ZIP, NAC, WRKY, C2H2 zinc finger (ZF), homeobox, and HSF gene families were over-represented. Gene co-expression network analysis was employed to identify transcription factors that may regulate the biosynthesis of lignin, cellulose and hemicellulose. As a complementary approach to microarray, real-time PCR analysis was used to characterize the expression of 1,045 transcription factors in the stem samples, and 64 of these were upregulated more than 5-fold during stem maturation. Reverse genetics characterization of a cellulose synthase gene in cluster 10 confirmed its function in xylem development. CONCLUSIONS: This study provides a useful transcriptome and expression resource for understanding cell wall development, which is pivotal to enhance biomass production in legumes.


Asunto(s)
Pared Celular/genética , Perfilación de la Expresión Génica , Glucosiltransferasas/biosíntesis , Medicago truncatula/genética , Regulación de la Expresión Génica de las Plantas , Redes Reguladoras de Genes/genética , Glucosiltransferasas/genética , Lignina/biosíntesis , Lignina/genética , Medicago truncatula/crecimiento & desarrollo , Tallos de la Planta/genética , Factores de Transcripción/biosíntesis , Factores de Transcripción/genética
2.
J Plant Physiol ; 170(10): 958-64, 2013 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-23566874

RESUMEN

Dendrobium nobile, a herbal medicine plant, contains many important alkaloids and other secondary metabolites with pharmacological and clinical effects. However, the biosynthetic pathway of these secondary metabolites is largely unknown. In present study, a cDNA sequence (DnTR2) that encodes a peptide with high similarity to known tropinone reductase (TR) was cloned from D. nobile Lindl. Sequence comparison and phylogenetic analysis showed that DnTR2 was evolutionarily distant from those well-characterized subgroups of TRs. qRT-PCR revealed that DnTR2 was expressed constitutively in all three vegetative organs (leaves, stems and roots) and was regulated by methyl jasmonate (MeJA), salicylic acid (SA) and nitrogen oxide (NO). Catalytic activity analysis using recombinant protein found that DnTR2 was not able to reduce tropinone, but reduced the two structural analogs of tropinone, 3-quinuclidinone hydrochloride and 4-methylcyclohexanone. Structural modeling and comparison suggested that the substrate specificity of TRs may not be determined by their phylogenetic relationships but by the amino acids that compose the substrate binding pocket. To verify this hypothesis, a site-directed mutagenesis was performed and it successfully restored the DnTR2 with tropinone reduction activity. Our results also showed that the substrate specificity of TRs was determined by a few residues that compose the substrate binding pocket which may have an important role for directed selecting of TRs with designated substrate specificities.


Asunto(s)
Oxidorreductasas de Alcohol/genética , Oxidorreductasas de Alcohol/metabolismo , Dendrobium/enzimología , Dendrobium/genética , Genes de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oxidorreductasas de Alcohol/química , Secuencia de Aminoácidos , Clonación Molecular , Perfilación de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Cinética , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Filogenia , Proteínas de Plantas/química , ARN Mensajero/genética , ARN Mensajero/metabolismo , Proteínas Recombinantes/aislamiento & purificación , Proteínas Recombinantes/metabolismo , Alineación de Secuencia , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA