Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Food Res Int ; 177: 113916, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38225150

RESUMEN

The influence of partial replacement of animal protein by plant-based ingredients on the protein digestibility of beef burgers was investigated. Beef burgers were supplemented with fava bean protein concentrate (FB) or a mixture of FB and flaxseed flour (FBFS), both processed by extrusion, at different levels: 0 (control), 10, 15, and 20 % (w/w). A pilot sensory analysis was conducted to select the percentage of flour inclusion for further assays: control, 10 % FB, and 10 % FBFS. Protein digestibility, amino acid profile, and protein secondary structure of these burgers after in vitro oral and gastrointestinal digestion were studied. In vitro boluses were prepared with the AM2 masticator, simulating normal mastication, and static in vitro digestion of boluses was performed according to the INFOGEST method. Inclusion of 10 % FB in beef burgers did not alter their flavour or tenderness compared to the control, whereas tenderness and juiciness scored slightly higher for the 10 % FBFS burgers compared to 15 % and 20 % FBFS ones. Poor lipid oxidative stability during storage was observed with 10 % FBFS burgers. Total protein content was significantly higher (p < 0.05) in 10 % FB burgers than in control burgers after in vitro oral digestion. Additionally, 10 % FB burgers presented higher amounts of free essential amino acids like isoleucine, leucine, phenylalanine, and valine at the end of digestion, as well as methionine, tyrosine, and histidine. Partial substitution of meat protein by 10 % FB improves the nutritional profile of beef burgers, without altering their sensory qualities.


Asunto(s)
Vicia faba , Animales , Bovinos , Vicia faba/química , Aminoácidos Esenciales , Digestión , Alimentación Animal , Manipulación de Alimentos/métodos
2.
Int J Mol Sci ; 23(11)2022 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-35682570

RESUMEN

The Western diet, rich in lipids and in n-6 polyunsaturated fatty acids (PUFAs), favors gut dysbiosis observed in Crohn's disease (CD). The aim of this study was to assess the effects of rebalancing the n-6/n-3 PUFA ratio in CEABAC10 transgenic mice that mimic CD. Mice in individual cages with running wheels were randomized in three diet groups for 12 weeks: high-fat diet (HFD), HFD + linseed oil (HFD-LS-O) and HFD + extruded linseed (HFD-LS-E). Then, they were orally challenged once with the Adherent-Invasive Escherichia coli (AIEC) LF82 pathobiont. After 12 weeks of diet, total energy intake, body composition, and intestinal permeability were not different between groups. After the AIEC-induced intestinal inflammation, fecal lipocalin-2 concentration was lower at day 6 in n-3 PUFAs supplementation groups (HFD-LS-O and HFD-LS-E) compared to HFD. Analysis of the mucosa-associated microbiota showed that the abundance of Prevotella, Paraprevotella, Ruminococcus, and Clostridiales was higher in the HFD-LS-E group. Butyrate levels were higher in the HFD-LS-E group and correlated with the Firmicutes/Proteobacteria ratio. This study demonstrates that extruded linseed supplementation had a beneficial health effect in a physically active mouse model of CD susceptibility. Additional studies are required to better decipher the matrix influence in the linseed supplementation effect.


Asunto(s)
Enfermedad de Crohn , Lino , Microbiota , Animales , Enfermedad de Crohn/tratamiento farmacológico , Enfermedad de Crohn/microbiología , Dieta Alta en Grasa , Suplementos Dietéticos , Modelos Animales de Enfermedad , Escherichia coli , Mucosa Intestinal/microbiología , Aceite de Linaza/farmacología , Ratones , Ratones Transgénicos
3.
Nutrients ; 13(10)2021 Oct 09.
Artículo en Inglés | MEDLINE | ID: mdl-34684532

RESUMEN

High-intensity interval training (HIIT) and linseed oil (LO) supplementation are effective strategies to reduce obesity-induced oxidative stress. Our aim was to determine whether the HIIT + LO combination prevents obesity-induced oxidative stress in high fat diet (HFD)-fed rats. HFD-fed 8-week-old, male, Wistar rats were subdivided in four groups: HFD, LO (2% of sunflower oil replaced with 2% of LO in the HFD), HIIT (4 days/week for 12 weeks), and HIIT + LO. Wistar rats fed a low-fat diet (LFD) were used as controls. Epididymal and subcutaneous adipose tissue, gastrocnemius muscle, liver, and plasma samples were collected to measure oxidative stress markers (AOPP, oxLDL), antioxidant (SOD, CAT, and GPx activities) and pro-oxidant (NOx and XO) enzyme activities. Compared with the LFD, the HFD altered the pro/antioxidant status in different tissues (increase of AOPP, oxLDL, SOD and catalase activities in plasma, and SOD activity increase in liver and decrease in adipose tissues) but not in gastrocnemius. LO upregulated CAT activity and decreased NOx in liver. HIIT alleviated HFD negative effects in liver by reducing SOD and NOx activities. Moreover, the HIIT + LO combination potentiated SOD activity upregulation in subcutaneous tissue. HIIT and LO supplementation have independent beneficial effects on the pro/antioxidant balance. Their association promotes SOD activity in subcutaneous adipose tissue.


Asunto(s)
Suplementos Dietéticos , Conducta Alimentaria , Entrenamiento de Intervalos de Alta Intensidad , Aceite de Linaza/farmacología , Obesidad/patología , Estrés Oxidativo , Animales , Antioxidantes/metabolismo , Biomarcadores/sangre , Catalasa/metabolismo , Conducta Alimentaria/efectos de los fármacos , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Nitratos/metabolismo , Obesidad/sangre , Estrés Oxidativo/efectos de los fármacos , Ratas Wistar , Tejido Subcutáneo/efectos de los fármacos , Tejido Subcutáneo/metabolismo , Superóxido Dismutasa/metabolismo , Regulación hacia Arriba/efectos de los fármacos
4.
Nutrients ; 13(3)2021 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-33673609

RESUMEN

Obesity, a major public health problem, is the consequence of an excess of body fat and biological alterations in the adipose tissue. Our aim was to determine whether high-intensity interval training (HIIT) and/or α-linolenic acid supplementation (to equilibrate the n-6/n-3 polyunsaturated fatty acids (PUFA) ratio) might prevent obesity disorders, particularly by modulating the mucosa-associated microbiota. Wistar rats received a low fat diet (LFD; control) or high fat diet (HFD) for 16 weeks to induce obesity. Then, animals in the HFD group were divided in four groups: HFD (control), HFD + linseed oil (LO), HFD + HIIT, HFD + HIIT + LO. In the HIIT groups, rats ran on a treadmill, 4 days.week-1. Erythrocyte n-3 PUFA content, body composition, inflammation, and intestinal mucosa-associated microbiota composition were assessed after 12 weeks. LO supplementation enhanced α-linolenic acid (ALA) to docosahexaenoic acid (DHA) conversion in erythrocytes, and HIIT potentiated this conversion. Compared with HFD, HIIT limited weight gain, fat mass accumulation, and adipocyte size, whereas LO reduced systemic inflammation. HIIT had the main effect on gut microbiota ß-diversity, but the HIIT + LO association significantly increased Oscillospira relative abundance. In our conditions, HIIT had a major effect on body fat mass, whereas HIIT + LO improved ALA conversion to DHA and increased the abundance of Oscillospira bacteria in the microbiota.


Asunto(s)
Clostridiales/efectos de los fármacos , Ácidos Docosahexaenoicos/metabolismo , Condicionamiento Físico Animal , Ácido alfa-Linolénico/farmacología , Adipocitos , Animales , Glucemia , Composición Corporal , Eritrocitos , Ácidos Grasos , Ácidos Grasos Volátiles/química , Heces/química , Microbioma Gastrointestinal , Prueba de Tolerancia a la Glucosa , Entrenamiento de Intervalos de Alta Intensidad , Mucosa Intestinal , Distribución Aleatoria , Ratas , Ratas Wistar , Ácido alfa-Linolénico/administración & dosificación
6.
Lipids ; 44(1): 53-62, 2009 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-18979126

RESUMEN

Linseed, a source of linolenic acid, is used in ruminant diets to increase polyunsaturated fatty acids (FA) in animal products. Seed processing is known to have an impact on FA rumen metabolism, but few data are available for linseed. We studied the effect of linseed lipid on ruminal metabolism and intestinal digestibility in cows. Three modes of linseed processing: rolled linseed (RL), extruded linseed (EL) and linseed oil plus linseed meal (LO), supplemented at 7.5% of DM intake, were compared to a control diet (C). Duodenal flows, intestinal digestibility and plasma composition were determined. The duodenal flow of linolenic acid was similar among diets. The sum of t10 and t11-18:1, which were coeluted, was increased with lipid-supplemented diets and represented more than 60% of trans 18:1 for EL and LO diets. The main 18:2 isomers were c9, c12 and t11, c15 among the non-conjugated isomers, and t11, t13 among CLA. Linseed supplementation increased the duodenal flow of unsaturated intermediates of biohydrogenation, and this effect was more pronounced for extruded seeds and oil than for rolled seeds. For most 18-carbon FA, intestinal digestibility was slightly higher for C and LO diets than for RL and EL. Plasma concentrations of non-conjugated 18:2 and linolenic acid were similar among the lipid-supplemented diets. Within diet, profiles of 18:1 isomers (except c9) remained very similar between duodenal and plasma FA.


Asunto(s)
Dieta/veterinaria , Digestión/efectos de los fármacos , Ácidos Grasos/metabolismo , Intestinos/efectos de los fármacos , Aceite de Linaza/farmacología , Rumen/efectos de los fármacos , Semillas/química , Alimentación Animal , Animales , Bovinos , Mucosa Intestinal/metabolismo , Isomerismo , Rumen/metabolismo , Agua/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA