Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Integr Cancer Ther ; 21: 15347354221077682, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35168384

RESUMEN

The efficacy of chemotherapeutic drugs for the treatment of brain metastasis may be compromised by the blood-brain barrier (BBB) and blood-tumor barrier (BTB). P-glycoprotein (P-gp) is a multidrug resistance protein that potentially limits the penetration of chemotherapeutics through the BBB and BTB. 5-Fluorouracil (5-FU) is widely used to treat cancer. Bioactive constituents of medicinal herbs, such as borneol and tetrandrine, potentially improve drug penetration through the BBB and BTB. We hypothesized that borneol and tetrandrine might modulate the BBB and BTB to enhance 5-FU penetration into the brain. To investigate this, in vitro and in vivo models were developed to explore the modulatory effects of borneol and tetrandrine on 5-FU penetration through the BBB and BTB. In the in vitro models, barrier integrity, cell viability, barrier penetration, P-gp activity, and NF-κB expression were assessed. In the in vivo brain metastasis models, cancer cells were injected into the internal carotid artery to evaluate tumor growth. The experimental results demonstrated that borneol and borneol + tetrandrine reduced BBB integrity. The efflux pump function of P-gp was partially inhibited by tetrandrine and borneol + tetrandrine. In the in vivo experiment, borneol + tetrandrine effectively prolonged survival without compromising body weight. In conclusion, BBB and BTB integrity was modulated by borneol and borneol + tetrandrine. The combination of borneol and tetrandrine could be used to improve the chemotherapeutic control of brain metastasis.


Asunto(s)
Barrera Hematoencefálica , Neoplasias Encefálicas , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Bencilisoquinolinas , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/metabolismo , Canfanos , Fluorouracilo/farmacología , Fluorouracilo/uso terapéutico , Humanos
2.
Chin J Integr Med ; 28(8): 725-729, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35048243

RESUMEN

OBJECTIVE: To investigate the effect of M3P (containing Deer antler, Cordyceps sinensis, Rhodiola rosea, and Panax ginseng); an herbal remedy with the function of tonifying Kidney (Shen) and invigorating Spleen (Pi), replenishing qi and nourishing blood; on fatigue alleviation, endurance capacity and toxicity. METHODS: Swimming with weight-loading of 24 male ICR mice was used to evaluate the endurance capacity, and fatigue-related plasma biomarkers were determined. Mice were randomly assigned to control or M3P treatment groups with 6 mice for each group and were orally administered with M3P everyday for 8 weeks at doses 0, 10, 33 or 100 mg/kg. Swimming time to exhaustion was measured in a specialized water tank. Lliver and kidney functions, body weight, and hematological profile were determined to evaluate the safety and toxicity after long-term M3P administration. RESULTS: M3P supplementation 100 mg/kg significantly increased swimming endurance time up to approximate 2.4 folds of controls (P<0.05). The plasma concentrations of cortisol and hepatic glycogen content were significantly increased in mice received M3P (P<0.05, P<0.01 respectively). The lactic acid level and blood glucose were not changed after M3P treatment (P>0.05). The liver and kidney functions muscle damage biomarker creatine, body weight, and hemograms were not altered in M3P supplementation (P>0.05). CONCLUSION: M3P supplementation may improve swimming endurance accompanied by increasing hepatic glycogen content and serum cortisol level without major toxicity.


Asunto(s)
Suplementos Dietéticos , Natación , Animales , Peso Corporal , Ciervos , Fatiga/tratamiento farmacológico , Hidrocortisona , Glucógeno Hepático , Masculino , Ratones , Ratones Endogámicos ICR , Músculo Esquelético , Natación/fisiología
3.
Int J Mol Sci ; 22(6)2021 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-33805784

RESUMEN

Hepatocellular carcinoma (HCC) frequently shows early invasion into blood vessels as well as intrahepatic metastasis. Innovations of novel small-molecule agents to block HCC invasion and subsequent metastasis are urgently needed. Moscatilin is a bibenzyl derivative extracted from the stems of a traditional Chinese medicine, orchid Dendrobium loddigesii. Although moscatilin has been reported to suppress tumor angiogenesis and growth, the anti-metastatic property of moscatilin has not been elucidated. The present results revealed that moscatilin inhibited metastatic behavior of HCC cells without cytotoxic fashion in highly invasive human HCC cell lines. Furthermore, moscatilin significantly suppressed the activity of urokinase plasminogen activator (uPA), but not matrix metalloproteinase (MMP)-2 and MMP-9. Interestingly, moscatilin-suppressed uPA activity was through down-regulation the protein level of uPA, and did not impair the uPA receptor and uPA inhibitory molecule (PAI-1) expressions. Meanwhile, the mRNA expression of uPA was inhibited via moscatilin in a concentration-dependent manner. In addition, the expression of phosphorylated Akt, rather than ERK1/2, was inhibited by moscatilin treatment. The expression of phosphor-IκBα, and -p65, as well as κB-luciferase activity were also repressed after moscatilin treatment. Transfection of constitutively active Akt (Myr-Akt) obviously restored the moscatilin-inhibited the activation of NF-κB and uPA, and cancer invasion in HCC cells. Taken together, these results suggest that moscatilin impedes HCC invasion and uPA expression through the Akt/NF-κB signaling pathway. Moscatilin might serve as a potential anti-metastatic agent against the disease progression of human HCC.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Compuestos de Bencilo/farmacología , Movimiento Celular/efectos de los fármacos , FN-kappa B/genética , Proteínas Proto-Oncogénicas c-akt/genética , Activador de Plasminógeno de Tipo Uroquinasa/genética , Animales , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Embrión de Pollo , Membrana Corioalantoides/irrigación sanguínea , Membrana Corioalantoides/efectos de los fármacos , Factor 4E Eucariótico de Iniciación/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación Neoplásica de la Expresión Génica , Hepatocitos/efectos de los fármacos , Hepatocitos/metabolismo , Hepatocitos/patología , Humanos , Metaloproteinasa 2 de la Matriz/genética , Metaloproteinasa 2 de la Matriz/metabolismo , Metaloproteinasa 9 de la Matriz/genética , Metaloproteinasa 9 de la Matriz/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Neovascularización Patológica/genética , Neovascularización Patológica/metabolismo , Neovascularización Patológica/prevención & control , Proteínas Proto-Oncogénicas c-akt/antagonistas & inhibidores , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/genética , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Serina-Treonina Quinasas TOR/genética , Serina-Treonina Quinasas TOR/metabolismo , Activador de Plasminógeno de Tipo Uroquinasa/antagonistas & inhibidores , Activador de Plasminógeno de Tipo Uroquinasa/metabolismo
4.
Biomolecules ; 9(12)2019 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-31771225

RESUMEN

A natural compound from Wasabia japonica, 6-(methylsulfinyl) hexyl isothiocyanate (6-MITC) was investigated for its anti-leukemia activity and mechanism of action. It was found that 6-MITC inhibited the viability of human chronic myelogenous leukemia K562 cells along with extensive mitotic arrest, spindle multipolarity, and cytoplasmic vacuole accumulation. The evidence of autophagy included the validation of autophagosomes with double-layered membranes under transmission electron microscopy, LC3I/II conversion, and the induction of G2/M phase arrest observed with acridine orange staining of treated cells, as well as the elevation of phosphorylated-histone H3 expression at the M phase. With regard to the expression of proteins related to mitosis, the downregulation of p-CHK1, p-CHK2, p-cdc25c, and p-cdc2, as well as the upregulation of cyclin B1, p-cdc20, cdc23, BubR1, Mad2, and p-plk-1 was observed. The knockdown of cdc20 was unable to block the effect of 6-MITC. The differentiation of k562 cells into monocytes, granulocytes, and megakaryocytes was not affected by 6-MITC. The 6-MITC-induced unique mode of cell death through the concurrent induction of mitosis and autophagy may have therapeutic potential. Further studies are required to elucidate the pathways associated with the counteracting occurrence of mitosis and autophagy.


Asunto(s)
Isotiocianatos/farmacología , Leucemia/fisiopatología , Mitosis/efectos de los fármacos , Extractos Vegetales/farmacología , Wasabia/química , Autofagia/efectos de los fármacos , Puntos de Control del Ciclo Celular/efectos de los fármacos , Muerte Celular/efectos de los fármacos , Histonas/metabolismo , Humanos , Células K562 , Leucemia/tratamiento farmacológico , Leucemia/metabolismo
5.
Phytomedicine ; 64: 152911, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31454653

RESUMEN

Background Garcimultiflorone K is a novel polyprenylated polycyclic acylphloroglucinol isolated from the stems of Garcinia multiflora that exhibits promising anti-angiogenic activity in human endothelial progenitor cells (EPCs). Purpose This study sought to determine the underlying anti-angiogenic mechanisms and pharmacological properties of garcimultiflorone K. Methods We examined the anti-angiogenic effects of garcimultiflorone K and its mechanisms of action using in vitro EPC models and in vivo zebrafish embryos. Results EPCs proliferation, migration, differentiation and capillary-like tube formation were effectively and concentration-dependently inhibited by garcimultiflorone K without any signs of cytotoxicity. Our investigations revealed that garcimultiflorone K suppressed EPCs angiogenesis through Akt, mTOR, p70S6K, and eNOS signaling cascades. Notably, garcimultiflorone K dose-dependently impeded angiogenesis in zebrafish embryos. Conclusion Our data demonstrate the anti-angiogneic effects of garcimultiflorone K in both in vitro and in vivo models. Garcimultiflorone K appears to have potential in the treatment of angiogenesis-related diseases.


Asunto(s)
Inhibidores de la Angiogénesis/farmacología , Garcinia/química , Neovascularización Patológica/tratamiento farmacológico , Floroglucinol/farmacología , Transducción de Señal/efectos de los fármacos , Inhibidores de la Angiogénesis/química , Animales , Diferenciación Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Relación Dosis-Respuesta a Droga , Células Progenitoras Endoteliales/efectos de los fármacos , Humanos , Óxido Nítrico Sintasa de Tipo III/metabolismo , Floroglucinol/química , Proteínas Proto-Oncogénicas c-akt/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Serina-Treonina Quinasas TOR/metabolismo , Pez Cebra
6.
Molecules ; 23(10)2018 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-30248933

RESUMEN

6-(methylsulfinyl) hexyl isothiocyanate (6-MITC) is a naturally occurring compound isolated from Wasabia japonica (wasabi). The synthetic derivatives, 6-(methylsulfenyl) hexyl isothiocyanate (I7447) and 6-(methylsulfonyl) hexyl isothiocyanate (I7557), were derived from 6-MITC with the deletion and addition of oxygen, respectively. We aimed to evaluate the effect of these synthetic compounds on human oral cancer cells, SAS and OECM-1. All three compounds (I7447, 6-MITC, and I7557) inhibited the viability of SAS and OECM-1 cells using MTT assay. Morphological observations showed various proportions of mitotic arrest and apoptosis in cells treated with these compounds. Cell cycle analysis revealed relatively abundant G2/M arrest in 6-MITC and I7557-treated cells, whereas sub-G1 accumulation was found in I7447-treated cells. In using phosphorylated histone H3 as a marker for mitosis, the addition of 6-MITC and I7557 (excluding I7447) could be shown to arrest cells during mitosis. In contrast, I7447 induced more prominent apoptosis than the 6-MITC or I7557 compounds. The down-regulated expression of the phosphorylated form of CHK1 and Cdc25c was noted in 6-MITC and I7557-treated cells. I7557 could sensitize SAS cells to death by radiation. The wasabi compound, 6-MITC, and its chemical derivatives with different numbers of oxygen may have differential pharmacological effects on human oral cancer cells.


Asunto(s)
Antineoplásicos/síntesis química , Quinasa 1 Reguladora del Ciclo Celular (Checkpoint 1)/metabolismo , Isotiocianatos/síntesis química , Neoplasias de la Boca/metabolismo , Wasabia/química , Fosfatasas cdc25/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Regulación hacia Abajo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Histonas/metabolismo , Humanos , Isotiocianatos/química , Isotiocianatos/farmacología , Neoplasias de la Boca/tratamiento farmacológico , Oxígeno/química , Fosforilación , Extractos Vegetales/química
7.
Oncotarget ; 8(51): 88563-88574, 2017 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-29179457

RESUMEN

PURPOSE: The induction of autophagic cell death is an important process in the development of anticancer therapeutics. We aimed to evaluate the activity of the ancient Chinese decoction Danggui Buxue Tang (DBT) against colorectal cancer (CRC) and the associated autophagy-related mechanism. MATERIALS AND METHODS: CT26 CRC cells were implanted into syngeneic BALB/c mice for the tumor growth assay. DBT extracts and DBT-PD (polysaccharide-depleted) fractions were orally administered. The toxicity profiles of the extracts were analyzed using measurements of body weight, hemogram, and biochemical parameters. The morphology of tissue sections was observed using light and transmission electron microscopy. Western blotting and small interference RNA assays were used to determine the mechanism. RESULTS: DBT-PD and DBT, which contained an equal amount of DBT-PD, inhibited CT26 syngeneic tumor growth. In the tumor specimen, the expression of microtubule-associated proteins 1A/1B light chain 3B (LC3B) was upregulated by DBT-PD and DBT. The development of autophagosomes was observed via transmission electron microscopy in tumors treated with DBT-PD and DBT. In vitro experiments for mechanism clarification demonstrated that DBT-PD could induce autophagic death in CT26 cells accompanied by LC3B lipidation, downregulation of phospho-p70s6k, and upregulation of Atg7. RNA interference of Atg7, but not Atg5, partially reversed the effect of DBT-PD on LC3B lipidation and expression of phospho-p70s6k and Atg7. The changes in ultrastructural morphology and LC3B expression induced by DBT-PD were also partially blocked by the knockdown of Atg7 mRNA. CONCLUSION: DBT induced autophagic death of colorectal cancer cells through the upregulation of Atg7 and modulation of the mTOR/p70s6k signaling pathway.

8.
Molecules ; 22(4)2017 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-28406456

RESUMEN

Cordycepin (3'-deoxyadenosine) is a natural compound abundantly found in Cordyceps sinesis in natural and fermented sources. In this study, we examined the effects of cordycepin in a human oral squamous cell carcinoma (OSCC) xenograft model. Cordycepin was administered in a regular, low-dose and prolonged schedule metronomic therapy. Two doses of cordycepin (25 mg/kg, 50 mg/kg) were administrated five days a week for eight consecutive weeks. The tumor volumes were reduced and survival time was significantly prolonged from 30.3 ± 0.9 days (control group) to 56 days (50 mg/kg group, the day of tumor-bearing mice were sacrificed for welfare consideration). The weights of mice did not change and liver, renal, and hematologic functions were not compromised. Cordycepin inhibited the OSCC cell viability in vitro (IC50 122.4-125.2 µM). Furthermore, morphological characteristics of apoptosis, increased caspase-3 activity and G2/M cell cycle arrest were observed. In wound healing assay, cordycepin restrained the OSCC cell migration. Cordycepin upregulated E-cadherin and downregulated N-cadherin protein expression, implying inhibition of epithelial-mesenchymal transition (EMT). The immunohistochemical staining of xenograft tumor with E-cadherin and vimentin validated in vitro results. In conclusion, metronomic cordycepin therapy showed effective tumor control, prolonged survival and low toxicities. Cytotoxicity against cancer cells with apoptotic features and EMT inhibition were observed.


Asunto(s)
Antineoplásicos/administración & dosificación , Desoxiadenosinas/administración & dosificación , Transición Epitelial-Mesenquimal/efectos de los fármacos , Neoplasias de la Boca/patología , Administración Metronómica , Animales , Antineoplásicos/química , Apoptosis/efectos de los fármacos , Carcinoma de Células Escamosas , Puntos de Control del Ciclo Celular/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Proliferación Celular/efectos de los fármacos , Desoxiadenosinas/química , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Humanos , Ratones , Estructura Molecular , Neoplasias de la Boca/tratamiento farmacológico , Neoplasias de la Boca/mortalidad , Carga Tumoral/efectos de los fármacos , Cicatrización de Heridas/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
9.
Molecules ; 21(12)2016 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-27929437

RESUMEN

Chemotherapy is an important treatment modality for colon cancer, and concurrent chemoradiation therapy (CCRT) is the preferred treatment route for patients with stage II and III rectal cancer. We examined whether DangguiBuxue Tang (DBT), a traditional Chinese herbal extract, sensitizes colorectal cancer cells to anticancer treatments. The polysaccharide-depleted fraction of DBT (DBT-PD) contains greater amounts of astragaloside IV (312.626 µg/g) and ferulic acid (1.404 µg/g) than does the original formula. Treatment of the murine colon carcinoma cell line (CT26) with DBT-PD inhibits growth, whereas treatment with comparable amounts of purified astragaloside IV and ferulic acid showed no significant effect. Concurrent treatment with DBT-PD increases the growth inhibitory effect of 5-fluorouracil up to 4.39-fold. DBT-PD enhances the effect of radiation therapy (RT) with a sensitizer enhancement ratio (SER) of up to 1.3. It also increases the therapeutic effect of CCRT on CT26 cells. Cells treated with DBP-PD showed ultrastructural changes characteristic of autophagy, including multiple cytoplasmic vacuoles with double-layered membranes, vacuoles containing remnants of degraded organelles, marked swelling and vacuolization of mitochondria, and autolysosome-like vacuoles. We conclude that DBT-PD induces autophagy-associated cell death in CT26 cells, and may have potential as a chemotherapy or radiotherapy sensitizer in colorectal cancer treatment.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Medicamentos Herbarios Chinos/farmacología , Fluorouracilo/farmacología , Quimioradioterapia , Resistencia a Antineoplásicos , Ensayos de Selección de Medicamentos Antitumorales , Sinergismo Farmacológico , Células HT29 , Humanos , Concentración 50 Inhibidora , Tolerancia a Radiación/efectos de los fármacos
10.
BMC Complement Altern Med ; 15: 445, 2015 Dec 22.
Artículo en Inglés | MEDLINE | ID: mdl-26694191

RESUMEN

BACKGROUND: Melanoma is an aggressive skin cancer and a predominant cause of skin cancer-related deaths. A previous study has demonstrated the ability of butein to inhibit tumor proliferation and invasion. However, the anti-metastatic mechanisms and in vivo effects of butein have not been fully elucidated. METHODS: MTT cell viability assays were used to evaluate the antitumor effects of butein in vitro. Cytotoxic effects of butein were measured by lactate dehydrogenase assay. Anti-migratory effects of butein were evaluated by two-dimensional scratch and transwell migration assays. Signaling transduction and VEGF-releasing assays were measured by Western blotting and ELISA. We also conducted an experimental analysis of the metastatic potential of tumor cells injected into the tail vein of C57BL/6 mice. RESULTS: We first demonstrated the effect of butein on cell viability at non-cytotoxic concentrations (1, 3, and 10 µM). In vitro, butein was found to inhibit the migration of B16F10 cells in a concentration-dependent manner using transwell and scratch assays. Butein had a dose-dependent effect on focal adhesion kinase, Akt, and ERK phosphorylation in B16F10 cells. Butein efficiently inhibited the mTOR/p70S6K translational inhibition machinery and decreased the production of VEGF in B16F10 cells. Furthermore, the in vivo antitumor effects of butein were demonstrated using a pulmonary metastasis model. CONCLUSION: The results of the present study indicate the potential utility of butein in the treatment of melanoma.


Asunto(s)
Chalconas/administración & dosificación , Melanoma Experimental/tratamiento farmacológico , Neoplasias Cutáneas/tratamiento farmacológico , Factor A de Crecimiento Endotelial Vascular/metabolismo , Animales , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Humanos , Masculino , Melanoma Experimental/metabolismo , Melanoma Experimental/patología , Melanoma Experimental/fisiopatología , Ratones , Ratones Endogámicos C57BL , Metástasis de la Neoplasia , Transducción de Señal/efectos de los fármacos , Neoplasias Cutáneas/metabolismo , Neoplasias Cutáneas/patología , Neoplasias Cutáneas/fisiopatología , Factor A de Crecimiento Endotelial Vascular/genética
11.
Artículo en Inglés | MEDLINE | ID: mdl-23864890

RESUMEN

Background. Armillaridin (AM) is isolated from Armillaria mellea. We examined the anticancer activity and radiosensitizing effect on human esophageal cancer cells. Methods. Human squamous cell carcinoma (CE81T/VGH and TE-2) and adenocarcinoma (BE-3 and SKGT-4) cell lines were cultured. The MTT assay was used for cell viability. The cell cycle was analyzed using propidium iodide staining. Mitochondrial transmembrane potential was measured by DiOC6(3) staining. The colony formation assay was performed for estimation of the radiation surviving fraction. Human CE81T/VGH xenografts were established for evaluation of therapeutic activity in vivo. Results. AM inhibited the viability of four human esophageal cancer cell lines with an estimated concentration of 50% inhibition (IC50) which was 3.4-6.9 µM. AM induced a hypoploid cell population and morphological alterations typical of apoptosis in cells. This apoptosis induction was accompanied by a reduction of mitochondrial transmembrane potential. AM accumulated cell cycle at G2/M phase and enhanced the radiosensitivity in CE81T/VGH cells. In vivo, AM inhibited the growth of CE81T/VGH xenografts without significant impact on body weight and white blood cell counts. Conclusion. Armillaridin could inhibit growth and enhance radiosensitivity of human esophageal cancer cells. There might be potential to integrate AM with radiotherapy for esophageal cancer treatment.

12.
J Neurochem ; 92(3): 692-700, 2005 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-15659238

RESUMEN

The effects of nine polyphenolic compounds on glutamate-mediated toxicity were investigated. The underlying mechanisms by which a polyphenolic compound confers its effect were also elucidated. Treatment of cortical neurons with 50 microm glutamate for 24 h decreased cell viability by 45.8 +/- 7.9%, and 50 microm of tournefolic acid B methyl ester attenuated glutamate-induced cell death by 46.8 +/- 17.8%. Glutamate increased the activity of caspase 35.2-fold, and to a similar extent for caspase 2, 6, 8 and 9. Tournefolic acid B methyl ester abrogated glutamate-induced activation of caspase 2, 3, 6 and 9 by about 70%, and to a lesser extent for caspase 8. Treatment with glutamate for 1 h elevated reactive oxygen species (ROS) by 208.3 +/- 21.3%. Tournefolic acid B methyl ester eliminated the glutamate-induced accumulation of ROS. Glutamate increased the phosphorylation of p54-c-jun N-terminal kinase (JNK) concomitantly with activation of the endogenous antioxidant defense system. Tournefolic acid B methyl ester at 50 microm diminished the activity of p54-JNK in control and glutamate-treated cells, coinciding with the abolishment of the glutamate-triggered antioxidant defense system. Therefore, tournefolic acid B methyl ester blocked the activation of the caspase cascade, eliminated ROS accumulation and abrogated the activation of JNK, thereby conferring a neuroprotective effect on glutamate-mediated neurotoxicity.


Asunto(s)
Inhibidores de Caspasas , Ácido Glutámico/toxicidad , Compuestos Heterocíclicos con 3 Anillos/farmacología , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Neuronas/efectos de los fármacos , Especies Reactivas de Oxígeno/antagonistas & inhibidores , Animales , Caspasas/metabolismo , Células Cultivadas , Corteza Cerebral/citología , Medicamentos Herbarios Chinos/química , Activación Enzimática/efectos de los fármacos , Flavonoides/farmacología , Glutatión/metabolismo , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Neuronas/metabolismo , Fenoles/farmacología , Polifenoles , Ratas , Ratas Sprague-Dawley , Especies Reactivas de Oxígeno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA