Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Oxid Med Cell Longev ; 2023: 8753309, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36644580

RESUMEN

Radiotherapy (RT) is currently only used in children with high-risk neuroblastoma (NB) due to concerns of long-term side effects as well as lack of effective adjuvant. Calreticulin (CALR) has served distinct physiological roles in cancer malignancies; nonetheless, impact of radiation on chaperones and molecular roles they play remains largely unknown. In present study, we systemically analyzed correlation between CALR and NB cells of different malignancies to investigate potential role of CALR in mediating radioresistance of NB. Our data revealed that more malignant NB cells are correlated to lower CALR expression, greater radioresistance, and elevated stemness as indicated by colony- and neurospheroid-forming abilities and vice versa. Of note, manipulating CALR expression in NB cells of varying endogenous CALR expression manifested changes in not only stemness but also radioresistant properties of those NB cells. Further, CALR overexpression resulted in greatly enhanced ROS and led to increased secretion of proinflammatory cytokines. Importantly, growth of NB tumors was significantly hampered by CALR overexpression and was synergistically ablated when RT was also administered. Collectively, our current study unraveled a new notion of utilizing CALR expression in malignant NB to diminish cancer stemness and mitigate radioresistance to achieve favorable therapeutic outcome for NB.


Asunto(s)
Calreticulina , Neuroblastoma , Niño , Humanos , Adyuvantes Inmunológicos , Calreticulina/genética , Calreticulina/metabolismo , Línea Celular Tumoral , Neuroblastoma/patología , Neuroblastoma/radioterapia , Tolerancia a Radiación
2.
Clin Epigenetics ; 14(1): 106, 2022 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-35999564

RESUMEN

BACKGROUND: Hepatocellular carcinoma (HCC) is one of the most common primary liver malignancies worldwide. The long-term prognosis for HCC remains extremely poor, with drug resistance being the major underlying cause of recurrence and mortality. The lncRNA colorectal neoplasia differentially expressed (CRNDE) is an epigenetic mediator and plays an important role to drive proliferation and drug resistance in HCC. However, CRNDE as an epigenetic regulator with influences sorafenib resistance in HCC is unclear. Thus, we explore the potential of targeting the CRNDE/p300/YY1 axis as a novel therapeutic strategy to overcome sorafenib resistance of HCC. METHOD: Detection of the expression level of CRNDE and EGFR in clinical specimens of HCC. CRNDE, EGFR, p300, and YY1expression were altered in HCC cells through transfection with different plasmids, and cell proliferation, migration, invasion, and sorafenib resistance were subsequently observed. Immunoprecipitation, chromatin immunoprecipitation, re-chromatin immunoprecipitation, site-directed mutagenesis, RNA Immunoprecipitation, immune fluorescence, qRT-PCR, and western blotting were performed to uncover the mechanisms of CRNDE regulation. The xenograft nude mice model was used to investigate the tumor growth and sorafenib resistance. RESULTS: In this study, we showed that CRNDE expression is significantly positively correlated with that of epidermal growth factor receptor (EGFR) in clinical specimens of HCC and induces proliferation and sorafenib resistance of HCC via EGFR-mediated signaling. Mechanistically, CRNDE stabilized the p300/YY1 complex at the EGFR promoter and simultaneously enhanced histone H3K9 and H3K27 acetylation, which serve as markers of relaxed chromatin. EGFR was positively upregulated by the epigenetic complex, p300/YY1, in a manner dependent on CRNDE expression, leading to enhanced tumor cell proliferation and sorafenib resistance. Furthermore, C646, a p300 inhibitor, suppressed EGFR transcriptional activity by decreasing chromatin relaxation and YY1 binding, which effectively reduced proliferation/sorafenib resistance and prolonged overall survival. CONCLUSION: Our collective findings support the potential of targeting the CRNDE/p300/YY1 axis as a novel therapeutic strategy to overcome sorafenib resistance of HCC.


Asunto(s)
Carcinoma Hepatocelular , Neoplasias Colorrectales , Neoplasias Hepáticas , ARN Largo no Codificante , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Línea Celular Tumoral , Proliferación Celular/genética , Cromatina , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Metilación de ADN , Resistencia a Antineoplásicos , Epigénesis Genética , Receptores ErbB/genética , Receptores ErbB/metabolismo , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Ratones , Ratones Desnudos , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Sorafenib/farmacología , Sorafenib/uso terapéutico , Factor de Transcripción YY1
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA