Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell Death Dis ; 15(1): 24, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-38195677

RESUMEN

ATP and its receptor P2RX7 exert a pivotal effect on antitumor immunity during chemotherapy-induced immunogenic cell death (ICD). Here, we demonstrated that TNFα-mediated PANX1 cleavage was essential for ATP release in response to chemotherapy in colorectal cancer (CRC). TNFα promoted PANX1 cleavage via a caspase 8/3-dependent pathway to enhance cancer cell immunogenicity, leading to dendritic cell maturation and T-cell activation. Blockade of the ATP receptor P2RX7 by the systemic administration of small molecules significantly attenuated the therapeutic efficacy of chemotherapy and decreased the infiltration of immune cells. In contrast, administration of an ATP mimic markedly increased the therapeutic efficacy of chemotherapy and enhanced the infiltration of immune cells in vivo. High PANX1 expression was positively correlated with the recruitment of DCs and T cells within the tumor microenvironment and was associated with favorable survival outcomes in CRC patients who received adjuvant chemotherapy. Furthermore, a loss-of-function P2RX7 mutation was associated with reduced infiltration of CD8+ immune cells and poor survival outcomes in patients. Taken together, these results reveal that TNFα-mediated PANX1 cleavage promotes ATP-P2RX7 signaling and is a key determinant of chemotherapy-induced antitumor immunity.


Asunto(s)
Antineoplásicos , Neoplasias Colorrectales , Humanos , Factor de Necrosis Tumoral alfa , Activación de Linfocitos , Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Neoplasias Colorrectales/tratamiento farmacológico , Neoplasias Colorrectales/genética , Adenosina Trifosfato , Microambiente Tumoral , Proteínas del Tejido Nervioso , Conexinas/genética , Receptores Purinérgicos P2X7/genética
2.
Cancer Immunol Immunother ; 72(7): 2283-2297, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36881132

RESUMEN

The CD39-CD73-adenosinergic pathway converts adenosine triphosphate (ATP) to adenosine for inhibiting anti-tumor immune responses. Therefore, targeting CD73 to reinvigorate anti-tumor immunity is considered the novel cancer immunotherapy to eradicate tumor cells. To fully understand the critical role of CD39/CD73 in colon adenocarcinoma (COAD), this study aims to comprehensive investigate the prognostic significance of CD39 and CD73 in stage I-IV COAD. Our data demonstrated that CD73 staining strongly marked malignant epithelial cells and CD39 was highly expressed in stromal cells. Attractively, tumor CD73 expression was significantly associated with tumor stage and the risk of distant metastasis, which suggested CD73 was as an independent factor for colon adenocarcinoma patients in univariate COX analysis [HR = 1.465, 95%CI = 1.084-1.978, p = 0.013]; however, high stromal CD39 in COAD patients was more likely to have favorable survival outcome [HR = 1.458, p = 1.103-1.927, p = 0.008]. Notably, high CD73 expression in COAD patients showed poor response to adjuvant chemotherapy and high risk of distant metastasis. High CD73 expression was inversely associated with less infiltration of CD45+ and CD8+ immune cells. However, administration with anti-CD73 antibodies significantly increased the response to oxaliplatin (OXP). Blockade of CD73 signaling synergistically enhanced OXP-induced ATP release, which is a marker of immunogenic cell death (ICD), promotes dendritic cell maturation and immune cell infiltration. Moreover, the risk of colorectal cancer lung metastasis was also decreased. Taken together, the present study revealed tumor CD73 expression inhibited the recruitment of immune cells and correlated with a poor prognosis in COAD patients, especially patients received adjuvant chemotherapy. Targeting CD73 to markedly increased the therapeutic response to chemotherapy and inhibited lung metastasis. Therefore, tumor CD73 may be an independent prognostic factor as well as the potential of therapeutic target for immunotherapy to benefit colon adenocarcinoma patients.


Asunto(s)
Adenocarcinoma , Neoplasias del Colon , Neoplasias Pulmonares , Humanos , Adenocarcinoma/patología , Neoplasias del Colon/tratamiento farmacológico , Adenosina Trifosfato/metabolismo , Neoplasias Pulmonares/tratamiento farmacológico , Oxaliplatino/uso terapéutico , Células Dendríticas/metabolismo
3.
Int J Mol Med ; 32(3): 577-84, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23857115

RESUMEN

Dihydrodiol dehydrogenase (DDH) is frequently detected in cancer cells, and its overexpression correlates with drug resistance, the downregulation of DNA repair mechanisms, increased frequency of tumor recurrence, cancer cell metastasis and poor prognosis. The silencing of DDH expression using siRNA, on the other hand, reduces drug resistance and cancer cell mobility. These data suggest that DDH may be an oncogene-related protein. However, no specific DDH inhibitor has been identified to date. Thus, in this study, we used DDH as a target enzyme in a live-cell enzyme-linked immunosorbent assay to screen Chinese medicinal herb extracts (CMHEs) with the aim of identifying a DDH inhibitor. Using this method, we found 49 among 796 CMHEs that inhibited DDH expression. We selected three potential extracts, which had the highest activity against DDH, for further fractionation using high-performance liquid chromatography. The active ingredient was identified by immunoblot analysis. The function of the active ingredient was characterized by cell function analysis. Our results revealed that the CMHE-purified compounds targeted DDH, inducing autophagy and reducing DNA repair, which in turn enhanced the cytotoxic effects of the anticancer drugs and irradiation.


Asunto(s)
Apoptosis/efectos de los fármacos , Autofagia/efectos de los fármacos , Inhibidores Enzimáticos/farmacología , Oxidorreductasas/antagonistas & inhibidores , Extractos Vegetales/farmacología , Sapindaceae/química , Antineoplásicos/farmacología , Línea Celular Tumoral , Membrana Celular/efectos de los fármacos , Membrana Celular/metabolismo , Ceramidas/metabolismo , Sinergismo Farmacológico , Humanos , Quempferoles/farmacología , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA