Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 14(1): 7571, 2024 03 30.
Artículo en Inglés | MEDLINE | ID: mdl-38555310

RESUMEN

Obesity is a growing concern in human and equine populations, predisposing to metabolic pathologies and reproductive disturbances. Cellular lipid accumulation and mitochondrial dysfunction play an important role in the pathologic consequences of obesity, which may be mitigated by dietary interventions targeting these processes. We hypothesized that obesity in the mare promotes follicular lipid accumulation and altered mitochondrial function of oocytes and granulosa cells, potentially contributing to impaired fertility in this population. We also predicted that these effects could be mitigated by dietary supplementation with a combination of targeted nutrients to improve follicular cell metabolism. Twenty mares were grouped as: Normal Weight [NW, n = 6, body condition score (BCS) 5.7 ± 0.3], Obese (OB, n = 7, BCS 7.7 ± 0.2), and Obese Diet Supplemented (OBD, n = 7, BCS 7.7 ± 0.2), and fed specific feed regimens for ≥ 6 weeks before sampling. Granulosa cells, follicular fluid, and cumulus-oocyte complexes were collected from follicles ≥ 35 mm during estrus and after induction of maturation. Obesity promoted several mitochondrial metabolic disturbances in granulosa cells, reduced L-carnitine availability in the follicle, promoted lipid accumulation in cumulus cells and oocytes, and increased basal oocyte metabolism. Diet supplementation of a complex nutrient mixture mitigated most of the metabolic changes in the follicles of obese mares, resulting in parameters similar to NW mares. In conclusion, obesity disturbs the equine ovarian follicle by promoting lipid accumulation and altering mitochondrial function. These effects may be partially mitigated with targeted nutritional intervention, thereby potentially improving fertility outcomes in the obese female.


Asunto(s)
Oocitos , Folículo Ovárico , Humanos , Caballos , Animales , Femenino , Folículo Ovárico/metabolismo , Oocitos/metabolismo , Líquido Folicular , Obesidad/metabolismo , Lípidos , Suplementos Dietéticos
2.
Am J Physiol Regul Integr Comp Physiol ; 325(5): R523-R533, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37642284

RESUMEN

Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. We examined the effects of a high-fat diet (HFD) during pregnancy on fetal skeletal muscle metabolism and metabolic risk parameters using an ovine model. White-faced ewes were fed a standardized diet containing 5% fat wt/wt (CON), or the same diet supplemented with 6% rumen-protected fats (11% total fat wt/wt; HFD) beginning 2 wk before mating until midgestation (GD75). Maternal HFD increased maternal weight gain, fetal body weight, and low-density lipoprotein levels in the uterine and umbilical circulation but had no significant effects on circulating glucose, triglycerides, or placental fatty acid transporters. Fatty acid (palmitoylcarnitine) oxidation capacity of permeabilized hindlimb muscle fibers was >50% higher in fetuses from HFD pregnancies, whereas pyruvate and maximal (mixed substrate) oxidation capacities were similar to CON. This corresponded to greater triacylglycerol content and protein expression of fatty acid transport and oxidation enzymes in fetal muscle but no significant effect on respiratory chain complexes or pyruvate dehydrogenase expression. However, serine-308 phosphorylation of insulin receptor substrate-1 was greater in fetal muscle from HFD pregnancies along with c-jun-NH2 terminal kinase activation, consistent with prenatal inhibition of skeletal muscle insulin signaling. These results indicate that maternal high-fat feeding shifts fetal skeletal muscle metabolism toward a greater capacity for fatty acid over glucose utilization and favors prenatal development of insulin resistance, which may predispose offspring to metabolic syndrome later in life.NEW & NOTEWORTHY Maternal diet during pregnancy is associated with offspring metabolic risk trajectory in humans and animal models, but the prenatal origins of these effects are less clear. This study examined the effects of a high-fat diet during pregnancy on metabolic risk parameters using a new sheep model. Results align with findings previously reported in nonhuman primates, demonstrating changes in fetal skeletal muscle metabolism that may predispose offspring to metabolic syndrome later in life.


Asunto(s)
Resistencia a la Insulina , Síndrome Metabólico , Animales , Femenino , Embarazo , Dieta Alta en Grasa/efectos adversos , Ácidos Grasos/metabolismo , Feto/metabolismo , Glucosa/metabolismo , Insulina/metabolismo , Resistencia a la Insulina/fisiología , Síndrome Metabólico/metabolismo , Músculo Esquelético/metabolismo , Placenta/metabolismo , Piruvatos/metabolismo , Ovinos
3.
Anim Reprod Sci ; 252: 107249, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37119563

RESUMEN

Maternal obesity elevates non-esterified fatty acids (NEFA) follicular concentrations. Bovine cumulus-oocyte complexes (COCs) matured in vitro under high NEFA have altered metabolism and reduced quality. Systemically, obesity promotes altered mitochondrial metabolism linked to L-carnitine insufficiency. We hypothesized that L-carnitine supplementation during IVM of bovine COCs in the presence of high NEFA would lessen the negative effects of exposure to excessive lipids on embryonic development and oxidative stress. COCs were collected from abattoir ovaries and matured in four groups: CON (control), LC (3 mM L-carnitine), HN (high NEFA: 200uM oleic, 150uM palmitic and 75uM stearic acid), and HNLC (HN and LC). Mature oocytes were assayed for aerobic and anaerobic metabolism utilizing oxygen and pH microsensors or fertilized in vitro (D0). Cleavage (D3) and blastocyst (D7, D8) rates were assessed. D3 embryos with ≥ 4 cells were stained for cytosolic and mitochondrial ROS. D8 blastocysts were assayed for gene transcript abundance of metabolic enzymes. Oocyte metabolism was not affected by IVM treatment. D3 formation of embryos with ≥ 4 cells were lower in LC or HN than CON or HNLC; blastocyst rates were greater for CON and lower for HN than LC and HNLC. D3 embryo mitochondrial and cytosolic ROS were reduced in HNLC when compared to other groups. IVM in HN altered blastocyst gene transcript abundance when compared to CON, but not LC or HNLC. In conclusion, supplementation with L-carnitine protects oocytes exposed to high NEFA during IVM and improves their developmental competence, suggesting that high lipid exposure may lead to L-carnitine insufficiency in bovine oocytes.


Asunto(s)
Carnitina , Técnicas de Maduración In Vitro de los Oocitos , Animales , Bovinos , Femenino , Embarazo , Técnicas de Maduración In Vitro de los Oocitos/veterinaria , Carnitina/farmacología , Carnitina/metabolismo , Ácidos Grasos no Esterificados/farmacología , Ácidos Grasos no Esterificados/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oocitos , Blastocisto , Desarrollo Embrionario
4.
Reproduction ; 163(4): 183-198, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-37379450

RESUMEN

Dietary supplementation is the most feasible method to improve oocyte function and developmental potential in vivo. During three experiments, oocytes were collected from maturing, dominant follicles of older mares to determine whether short-term dietary supplements can alter oocyte metabolic function, lipid composition, and developmental potential. Over approximately 8 weeks, control mares were fed hay (CON) or hay and grain products (COB). Treated mares received supplements designed for equine wellness and gastrointestinal health, flaxseed oil, and a proprietary blend of fatty acid and antioxidant support (reproductive support supplement (RSS)) intended to increase antioxidant activity and lipid oxidation. RSS was modified for individual experiments with additional antioxidants or altered concentrations of n-3 to n-6 fatty acids. Oocytes from mares supplemented with RSS when compared to COB had higher basal oxygen consumption, indicative of higher aerobic metabolism, and proportionately more aerobic to anaerobic metabolism. In the second experiment, oocytes collected from the same mares prior to (CON) and after approximately 8 weeks of RSS supplementation had significantly reduced oocyte lipid abundance. In the final experiment, COB was compared to RSS supplementation, including RSS modified to proportionately reduce n-3 fatty acids and increase n-6 fatty acids. The ability of sperm-injected oocytes to develop into blastocysts was higher for RSS, regardless of fatty acid content, than for COB. We demonstrated that short-term diet supplementation can directly affect oocyte function in older mares, resulting in oocytes with increased metabolic activity, reduced lipid content, and increased developmental potential.


Asunto(s)
Oocitos , Semen , Caballos , Animales , Femenino , Masculino , Dieta/veterinaria , Ácidos Grasos , Antioxidantes , Ácidos Grasos Omega-6
5.
Cardiovasc Res ; 94(3): 460-8, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22411972

RESUMEN

AIMS: Cardiolipin (CL) is a tetra-acyl phospholipid that provides structural and functional support to several proteins in the inner mitochondrial membrane. The majority of CL in the healthy mammalian heart contains four linoleic acid acyl chains (L(4)CL). A selective loss of L(4)CL is associated with mitochondrial dysfunction and heart failure in humans and animal models. We examined whether supplementing the diet with linoleic acid would preserve cardiac L(4)CL and attenuate mitochondrial dysfunction and contractile failure in rats with hypertensive heart failure. METHODS AND RESULTS: Male spontaneously hypertensive heart failure rats (21 months of age) were administered diets supplemented with high-linoleate safflower oil (HLSO) or lard (10% w/w; 28% kilocalorie fat) or without supplemental fat (control) for 4 weeks. HLSO preserved L(4)CL and total CL to 90% of non-failing levels (vs. 61-75% in control and lard groups), and attenuated 17-22% decreases in state 3 mitochondrial respiration observed in the control and lard groups (P < 0.05). Left ventricular fractional shortening was significantly higher in HLSO vs. control (33 ± 2 vs. 29 ± 2%, P < 0.05), while plasma insulin levels were lower (5.4 ± 1.1 vs. 9.1 ± 2.3 ng/mL; P < 0.05), with no significant effect of lard supplementation. HLSO also increased serum concentrations of several eicosanoid species compared with control and lard diets, but had no effect on plasma glucose or blood pressure. CONCLUSION: Moderate consumption of HLSO preserves CL and mitochondrial function in the failing heart and may be a useful adjuvant therapy for this condition.


Asunto(s)
Cardiolipinas/metabolismo , Insuficiencia Cardíaca/dietoterapia , Ácido Linoleico/uso terapéutico , Mitocondrias/metabolismo , Aceite de Cártamo/uso terapéutico , Animales , Presión Sanguínea/efectos de los fármacos , Corazón/fisiopatología , Insuficiencia Cardíaca/fisiopatología , Ácido Linoleico/farmacología , Masculino , Ratas , Ratas Endogámicas SHR/metabolismo
6.
PLoS One ; 7(12): e51994, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23300587

RESUMEN

Obesity increases risk for cardiomyopathy in the absence of hypertension, diabetes or ischemia. The fatty acid milieu, modulated by diet, may modify myocardial structure and function, lending partial explanation for the array of cardiomyopathic phenotypy. We sought to identify gross, cellular and ultrastructural myocardial changes associated with Western diet intake, and subsequent modification with docosahexaenoic acid (DHA) supplementation. Wistar and Sprague-Dawley (SD) rats received 1 of 3 diets: control (CON); Western (WES); Western + DHA (WES+DHA). After 12 weeks of treatment, echocardiography was performed and myocardial adiponectin, fatty acids, collagen, area occupied by lipid and myocytes, and ultrastructure were determined. Strain effects included higher serum adiponectin in Wistar rats, and differences in myocardial fatty acid composition. Diet effects were evident in that both WES and WES+DHA feeding were associated with similarly increased left ventricular (LV) diastolic cranial wall thickness (LVW(cr/d)) and decreased diastolic internal diameter (LVID(d)), compared to CON. Unexpectedly, WES+DHA feeding was associated additionally with increased thickness of the LV cranial wall during systole (LVW(cr/s)) and the caudal wall during diastole (LVW(ca/d)) compared to CON; this was observed concomitantly with increased serum and myocardial adiponectin. Diastolic dysfunction was present in WES+DHA rats compared to both WES and CON. Myocyte cross sectional area (CSA) was greater in WES compared to CON rats. In both fat-fed groups, transmission electron microscopy (TEM) revealed myofibril degeneration, disorganized mitochondrial cristae, lipid inclusions and vacuolation. In the absence of hypertension and whole body insulin resistance, WES+DHA intake was associated with more global LV thickening and with diastolic dysfunction, compared to WES feeding alone. Myocyte hypertrophy, possibly related to subcellular injury, is an early change that may contribute to gross hypertrophy. Strain differences in adipokines and myocardial fatty acid accretion may underlie heterogeneous data from rodent studies.


Asunto(s)
Cardiomiopatías/etiología , Dieta/efectos adversos , Suplementos Dietéticos , Ácidos Docosahexaenoicos/administración & dosificación , Adiponectina/sangre , Animales , Western Blotting , Cardiomiopatías/metabolismo , Cardiomiopatías/prevención & control , Ecocardiografía , Ácidos Grasos/análisis , Leptina/sangre , Masculino , Microscopía Electrónica de Transmisión , ARN Mensajero/genética , Ratas , Ratas Sprague-Dawley , Ratas Wistar , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Triglicéridos/sangre
7.
Hypertension ; 52(3): 549-55, 2008 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-18663155

RESUMEN

Recent studies indicate that high-fat diets may attenuate cardiac hypertrophy and contractile dysfunction in chronic hypertension. However, it is unclear whether consuming a high-fat diet improves prognosis in aged individuals with advanced hypertensive heart disease or the extent to which differences in its fatty acid composition modulate its effects in this setting. In this study, aged spontaneously hypertensive heart failure rats were administered a standard high-carbohydrate diet or high-fat diet (42% of kilocalories) supplemented with high-linoleate safflower oil or lard until death to determine their effects on disease progression and mortality. Both high-fat diets attenuated cardiac hypertrophy, left ventricular chamber dilation, and systolic dysfunction observed in rats consuming the high-carbohydrate diet. However, the lard diet significantly hastened heart failure mortality compared with the high-carbohydrate diet, whereas the linoleate diet significantly delayed mortality. Both high-fat diets elicited changes in the myocardial fatty acid profile, but neither had any effect on thromboxane excretion or blood pressure. The prosurvival effect of the linoleate diet was associated with a greater myocardial content and linoleate-enrichment of cardiolipin, an essential mitochondrial phospholipid known to be deficient in the failing heart. This study demonstrates that, despite having favorable effects on cardiac morphology and function in hypertension, a high-fat diet may accelerate or attenuate mortality in advanced hypertensive heart disease depending on its fatty acid composition. The precise mechanisms responsible for the divergent effects of the lard and linoleate-enriched diets merit further investigation but may involve diet-induced changes in the content and/or composition of cardiolipin in the heart.


Asunto(s)
Grasas de la Dieta/farmacología , Insuficiencia Cardíaca/dietoterapia , Insuficiencia Cardíaca/mortalidad , Hipertensión/dietoterapia , Hipertensión/mortalidad , Ácido Linoleico/farmacología , Alimentación Animal , Animales , Presión Sanguínea/efectos de los fármacos , Cardiolipinas/metabolismo , Dieta con Restricción de Grasas , Carbohidratos de la Dieta/farmacología , Modelos Animales de Enfermedad , Ecocardiografía , Ácidos Grasos/sangre , Insuficiencia Cardíaca/diagnóstico por imagen , Estimación de Kaplan-Meier , Masculino , Miocardio/metabolismo , Ratas , Ratas Mutantes , Tromboxanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA