Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
ACS Nano ; 13(9): 10545-10554, 2019 09 24.
Artículo en Inglés | MEDLINE | ID: mdl-31449393

RESUMEN

Accurate and low-cost analysis of biomolecules is important for many applications. This work seeks to further improve the measurement bandwidths achievable with solid-state nanopores, which have emerged as an important platform for this analysis. We report single-stranded DNA translocation recordings at a bandwidth of 10 MHz copolymers of 80 (C20A20C20A20), 90 (C30A30C30), and 200 (C50A50C50A50) nucleotides through Si nanopores with effective diameters of 1.4-2.1 nm and effective membrane thicknesses 0.5-8.9 nm. By optimizing glass chips with thin nanopores and by integrating them with custom-designed amplifiers based on complementary metal-oxide-semiconductor technology, this work demonstrates detection of translocation events as brief as 100 ns with a signal-to-noise ratio exceeding seven at a measurement bandwidth of 10 MHz. We also report data robustness and variability across 13 pores of similar size and thickness, yielding a current blockade between 30 and 60% with a mean ionic current blockade (ΔI) of ∼3-9 nA and a characteristic dwell time of ∼2-21 ns per nucleotide. These measurements show that characteristic translocation rates are at least 10 times faster than previously recorded. We detect transient intraevent fluctuations, multiple current levels within translocation events, and variability of DNA translocation event signatures and durations.


Asunto(s)
ADN de Cadena Simple/química , Vidrio/química , Nanoporos , Metales/química , Óxidos/química , Semiconductores , Procesamiento de Señales Asistido por Computador
2.
Nano Lett ; 19(2): 1090-1097, 2019 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-30601669

RESUMEN

Recent work has pushed the noise-limited bandwidths of solid-state nanopore conductance recordings to more than 5 MHz and of ion channel conductance recordings to more than 500 kHz through the use of integrated complementary metal-oxide-semiconductor (CMOS) integrated circuits. Despite the spectral spread of the pulse-like signals that characterize these recordings when a sinusoidal basis is employed, Bessel filters are commonly used to denoise these signals to acceptable signal-to-noise ratios (SNRs) at the cost of losing many of the faster temporal features. Here, we report improvements to the SNR that can be achieved using wavelet denoising instead of Bessel filtering. When combined with state-of-the-art high-bandwidth CMOS recording instrumentation, we can reduce baseline noise levels by over a factor of 4 compared to a 2.5 MHz Bessel filter while retaining transient properties in the signal comparable to this filter bandwidth. Similarly, for ion-channel recordings, we achieve a temporal response better than a 100 kHz Bessel filter with a noise level comparable to that achievable with a 25 kHz Bessel filter. Improvements in SNR can be used to achieve robust statistical analyses of these recordings, which may provide important insights into nanopore translocation dynamics and mechanisms of ion-channel function.


Asunto(s)
Electrónica/instrumentación , Canales Iónicos/metabolismo , Nanoporos , Semiconductores , Análisis de Ondículas , Adenosina Trifosfato/metabolismo , Algoritmos , Diseño de Equipo , Humanos , Transporte Iónico , Nanoporos/ultraestructura , Nanotecnología , Relación Señal-Ruido
3.
ACS Nano ; 11(7): 7494-7507, 2017 07 25.
Artículo en Inglés | MEDLINE | ID: mdl-28666086

RESUMEN

A tunable band gap in phosphorene extends its applicability in nanoelectronic and optoelectronic applications. Here, we propose to tune the band gap in phosphorene by patterning antidot lattices, which are periodic arrays of holes or nanopores etched in the material, and by exploiting quantum confinement in the corresponding nanoconstrictions. We fabricated antidot lattices with radii down to 13 nm in few-layer black phosphorus flakes protected by an oxide layer and observed suppression of the in-plane phonon modes relative to the unmodified material via Raman spectroscopy. In contrast to graphene antidots, the Raman peak positions in few-layer BP antidots are unchanged, in agreement with predicted power spectra. We also use DFT calculations to predict the electronic properties of phosphorene antidot lattices and observe a band gap scaling consistent with quantum confinement effects. Deviations are attributed primarily to self-passivating edge morphologies, where each phosphorus atom has the same number of bonds per atom as the pristine material so that no dopants can saturate dangling bonds. Quantum confinement is stronger for the zigzag edge nanoconstrictions between the holes as compared to those with armchair edges, resulting in a roughly bimodal band gap distribution. Interestingly, in two of the antidot structures an unreported self-passivating reconstruction of the zigzag edge endows the systems with a metallic component. The experimental demonstration of antidots and the theoretical results provide motivation to further scale down nanofabrication of antidots in the few-nanometer size regime, where quantum confinement is particularly important.


Asunto(s)
Nanoporos/ultraestructura , Nanoestructuras/química , Fósforo/química , Semiconductores , Anisotropía , Electrones , Diseño de Equipo , Modelos Moleculares , Nanoestructuras/ultraestructura , Teoría Cuántica
4.
Nano Lett ; 16(7): 4483-9, 2016 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-27332998

RESUMEN

Despite the potential for nanopores to be a platform for high-bandwidth study of single-molecule systems, ionic current measurements through nanopores have been limited in their temporal resolution by noise arising from poorly optimized measurement electronics and large parasitic capacitances in the nanopore membranes. Here, we present a complementary metal-oxide-semiconductor (CMOS) nanopore (CNP) amplifier capable of low noise recordings at an unprecedented 10 MHz bandwidth. When integrated with state-of-the-art solid-state nanopores in silicon nitride membranes, we achieve an SNR of greater than 10 for ssDNA translocations at a measurement bandwidth of 5 MHz, which represents the fastest ion current recordings through nanopores reported to date. We observe transient features in ssDNA translocation events that are as short as 200 ns, which are hidden even at bandwidths as high as 1 MHz. These features offer further insights into the translocation kinetics of molecules entering and exiting the pore. This platform highlights the advantages of high-bandwidth translocation measurements made possible by integrating nanopores and custom-designed electronics.


Asunto(s)
ADN de Cadena Simple/análisis , Nanoporos , Semiconductores , Nanotecnología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA