Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nutrients ; 14(18)2022 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-36145202

RESUMEN

Chronic inflammation of the respiratory tract is one of the most concerning public health issues, as it can lead to chronic respiratory diseases (CRDs), some of which are more detrimental than others. Chronic respiratory diseases include chronic obstructive pulmonary disease (COPD), asthma, lung cancer, and pulmonary fibrosis. The conventional drug therapies for the management and treatment of CRDs only address the symptoms and fail to reverse or recover the chronic-inflammation-mediated structural and functional damage of the respiratory tract. In addition, the low efficacy and adverse effects of these drugs have directed the attention of researchers towards nutraceuticals in search of potential treatment strategies that can not only ameliorate CRD symptoms but also can repair and reverse inflammatory damage. Hence, there is a growing interest toward investigating the medicinal benefits of nutraceuticals, such as rutin, curcumin, zerumbone, and others. Nutraceuticals carry many nutritional and therapeutic properties, including anti-inflammatory, antioxidant, anticancer, antidiabetic, and anti-obesity properties, and usually do not have as many adverse effects, as they are naturally sourced. Recently, the use of nanoparticles has also been increasingly studied for the nano drug delivery of these nutraceuticals. The discrete size of nanoparticles holds great potential for the level of permeability that can be achieved when transporting these nutraceutical compounds. This review is aimed to provide an understanding of the use of nutraceuticals in combination with nanoparticles against CRDs and their mechanisms involved in slowing down or reversing the progression of CRDs by inhibiting pro-inflammatory signaling pathways.


Asunto(s)
Curcumina , Enfermedad Pulmonar Obstructiva Crónica , Antiinflamatorios/farmacología , Antioxidantes/uso terapéutico , Curcumina/uso terapéutico , Alimentos Funcionales , Humanos , Hipoglucemiantes/uso terapéutico , Inflamación/tratamiento farmacológico , Enfermedad Pulmonar Obstructiva Crónica/tratamiento farmacológico , Rutina/uso terapéutico
2.
Proteomics ; 22(19-20): e2100247, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35866514

RESUMEN

Fingolimod (FTY720) is an oral drug approved by the Food and Drug Administration (FDA) for management of multiple sclerosis (MS) symptoms, which has also shown beneficial effects against Alzheimer's (AD) and Parkinson's (PD) diseases pathologies. Although an extensive effort has been made to identify mechanisms underpinning its therapeutic effects, much remains unknown. Here, we investigated Fingolimod induced proteome changes in the cerebellum (CB) and frontal cortex (FC) regions of the brain which are known to be severely affected in MS, using a tandem mass tag (TMT) isobaric labeling-based quantitative mass-spectrometric approach to investigate the mechanism of action of Fingolimod. This study identified 6749 and 6319 proteins in CB and FC, respectively, and returned 2609 and 3086 differentially expressed proteins in mouse CB and FC, respectively, between Fingolimod treated and control groups. Subsequent bioinformatics analyses indicated a metabolic reprogramming in both brain regions of the Fingolimod treated group, where oxidative phosphorylation was upregulated while glycolysis and pentose phosphate pathway were downregulated. In addition, modulation of neuroinflammation in the Fingolimod treated group was indicated by upregulation of retrograde endocannabinoid signaling and autophagy pathways, and downregulation of neuroinflammation related pathways including neutrophil degranulation and the IL-12 mediated signaling pathway. Our findings suggest that Fingolimod may exert its protective effects on the brain by inducing metabolic reprogramming and neuroinflammation pathway modulation.


Asunto(s)
Clorhidrato de Fingolimod , Esclerosis Múltiple , Animales , Ratones , Clorhidrato de Fingolimod/farmacología , Clorhidrato de Fingolimod/metabolismo , Clorhidrato de Fingolimod/uso terapéutico , Proteoma/metabolismo , Endocannabinoides/metabolismo , Encéfalo/metabolismo , Esclerosis Múltiple/metabolismo , Metabolismo Energético , Autofagia , Interleucina-12/metabolismo
3.
Crit Rev Food Sci Nutr ; 62(27): 7576-7590, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-33977840

RESUMEN

Respiratory diseases, both acute and chronic, are reported to be the leading cause of morbidity and mortality, affecting millions of people globally, leading to high socio-economic burden for the society in the recent decades. Chronic inflammation and decline in lung function are the common symptoms of respiratory diseases. The current treatment strategies revolve around using appropriate anti-inflammatory agents and bronchodilators. A range of anti-inflammatory agents and bronchodilators are currently available in the market; however, the usage of such medications is limited due to the potential for various adverse effects. To cope with this issue, researchers have been exploring various novel, alternative therapeutic strategies that are safe and effective to treat respiratory diseases. Several studies have been reported on the possible links between food and food-derived products in combating various chronic inflammatory diseases. Nutraceuticals are examples of such food-derived products which are gaining much interest in terms of its usage for the well-being and better human health. As a consequence, intensive research is currently aimed at identifying novel nutraceuticals, and there is an emerging notion that nutraceuticals can have a positive impact in various respiratory diseases. In this review, we discuss the efficacy of nutraceuticals in altering the various cellular and molecular mechanisms involved in mitigating the symptoms of respiratory diseases.


Asunto(s)
Asma , Broncodilatadores , Antiinflamatorios/uso terapéutico , Suplementos Dietéticos , Humanos , Enfermedad Pulmonar Obstructiva Crónica
4.
Int J Pharm ; 612: 121306, 2022 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-34813906

RESUMEN

Liquid self-nanoemulsifying drug delivery system (L-SNEDDS) of curcumin and quercetin were prepared by dissolving them in isotropic mixture of Labrafil M1944CS®, Capmul MCM®, Tween-80® and Transcutol P®. The prepared L-SNEDDS were solidified using Ganoderma lucidum extract, probiotics and Aerosil-200® using spray drying. These were further converted into pellets using extrusion-spheronization. The mean droplet size and zeta potential of L-SNEDDS were found to be 63.46 ± 2.12 nm and - 14.8 ± 3.11 mV while for solid SNEDDS pellets, these were 72.46 ± 2.16 nm and -38.7 ± 1.34 mV, respectively. The dissolution rate for curcumin and quercetin each was enhanced by 4.5 folds while permeability was enhanced by 5.28 folds (curcumin) and 3.35 folds (quercetin) when loaded into SNEDDS pellets. The Cmax for curcumin and quercetin containing SNEDDS pellets was found 532.34 ± 5.64 ng/mL and 4280 ± 65.67 ng/mL, respectively. This was 17.55 and 3.48 folds higher as compared to their naïve forms. About 50.23- and 5.57-folds increase in bioavailability was observed for curcumin and quercetin respectively, upon loading into SNEDDS pellets. SNEDDS pellets were found stable at accelerated storage conditions. The developed formulation was able to normalize the levels of blood glucose, lipids, antioxidant biomarkers, and tissue architecture of pancreas and liver in streptozotocin induced diabetic rats as compared to their naïve forms.


Asunto(s)
Curcumina , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Nanopartículas , Probióticos , Reishi , Administración Oral , Animales , Disponibilidad Biológica , Diabetes Mellitus Experimental/tratamiento farmacológico , Sistemas de Liberación de Medicamentos , Emulsiones , Tamaño de la Partícula , Polvos/uso terapéutico , Quercetina/uso terapéutico , Ratas , Solubilidad , Estreptozocina
5.
Biomolecules ; 11(10)2021 09 27.
Artículo en Inglés | MEDLINE | ID: mdl-34680044

RESUMEN

Cannabis (Cannabis sativa), popularly known as marijuana, is the most commonly used psychoactive substance and is considered illicit in most countries worldwide. However, a growing body of research has provided evidence of the therapeutic properties of chemical components of cannabis known as cannabinoids against several diseases including Alzheimer's disease (AD), multiple sclerosis (MS), Parkinson's disease, schizophrenia and glaucoma; these have prompted changes in medicinal cannabis legislation. The relaxation of legal restrictions and increased socio-cultural acceptance has led to its increase in both medicinal and recreational usage. Several biochemically active components of cannabis have a range of effects on the biological system. There is an urgent need for more research to better understand the molecular and biochemical effects of cannabis at a cellular level, to understand fully its implications as a pharmaceutical drug. Proteomics technology is an efficient tool to rigorously elucidate the mechanistic effects of cannabis on the human body in a cell and tissue-specific manner, drawing conclusions associated with its toxicity as well as therapeutic benefits, safety and efficacy profiles. This review provides a comprehensive overview of both in vitro and in vivo proteomic studies involving the cellular and molecular effects of cannabis and cannabis-derived compounds.


Asunto(s)
Cannabinoides/uso terapéutico , Cannabis/genética , Proteoma/genética , Proteómica , Enfermedad de Alzheimer/tratamiento farmacológico , Analgésicos/uso terapéutico , Agonistas de Receptores de Cannabinoides/uso terapéutico , Cannabinoides/genética , Glaucoma/tratamiento farmacológico , Humanos , Esclerosis Múltiple/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Proteoma/efectos de los fármacos , Esquizofrenia/tratamiento farmacológico
6.
J Transl Med ; 18(1): 278, 2020 07 09.
Artículo en Inglés | MEDLINE | ID: mdl-32646487

RESUMEN

BACKGROUND: Severe acute respiratory syndrome (SARS) has been initiating pandemics since the beginning of the century. In December 2019, the world was hit again by a devastating SARS episode that has so far infected almost four million individuals worldwide, with over 200,000 fatalities having already occurred by mid-April 2020, and the infection rate continues to grow exponentially. SARS coronavirus 2 (SARS-CoV-2) is a single stranded RNA pathogen which is characterised by a high mutation rate. It is vital to explore the mutagenic capability of the viral genome that enables SARS-CoV-2 to rapidly jump from one host immunity to another and adapt to the genetic pool of local populations. METHODS: For this study, we analysed 2301 complete viral sequences reported from SARS-CoV-2 infected patients. SARS-CoV-2 host genomes were collected from The Global Initiative on Sharing All Influenza Data (GISAID) database containing 9 genomes from pangolin-CoV origin and 3 genomes from bat-CoV origin, Wuhan SARS-CoV2 reference genome was collected from GeneBank database. The Multiple sequence alignment tool, Clustal Omega was used for genomic sequence alignment. The viral replicating enzyme, 3-chymotrypsin-like cysteine protease (3CLpro) that plays a key role in its pathogenicity was used to assess its affinity with pharmacological inhibitors and repurposed drugs such as anti-viral flavones, biflavanoids, anti-malarial drugs and vitamin supplements. RESULTS: Our results demonstrate that bat-CoV shares > 96% similar identity, while pangolin-CoV shares 85.98% identity with Wuhan SARS-CoV-2 genome. This in-depth analysis has identified 12 novel recurrent mutations in South American and African viral genomes out of which 3 were unique in South America, 4 unique in Africa and 5 were present in-patient isolates from both populations. Using state of the art in silico approaches, this study further investigates the interaction of repurposed drugs with the SARS-CoV-2 3CLpro enzyme, which regulates viral replication machinery. CONCLUSIONS: Overall, this study provides insights into the evolving mutations, with implications to understand viral pathogenicity and possible new strategies for repurposing compounds to combat the nCovid-19 pandemic.


Asunto(s)
Betacoronavirus/enzimología , Simulación por Computador , Infecciones por Coronavirus/virología , Cisteína Endopeptidasas/metabolismo , Replicación del ADN , Reposicionamiento de Medicamentos , Geografía , Neumonía Viral/virología , Proteínas no Estructurales Virales/metabolismo , Betacoronavirus/genética , COVID-19 , Proteasas 3C de Coronavirus , Evolución Molecular , Genoma Viral , Humanos , Simulación del Acoplamiento Molecular , Mutación/genética , Tasa de Mutación , Pandemias , Filogenia , SARS-CoV-2 , Ensamble de Virus
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA