Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytother Res ; 37(9): 4092-4101, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37253375

RESUMEN

Though Honokiol was known to have anti-inflammatory, antioxidant, anticancer, antithrombotic, anti-viral, metabolic, antithrombotic, and neurotrophic activities, the underlying mechanisms of Honokiol on epithelial-mesenchymal transition (EMT) mediated liver fibrosis still remain elusive so far. Anti-EMT and antifibrotic effects of Honokiol were explored in murine AML-12 hepatocyte cells by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide (MTT) assay, wound healing assay, Western blotting and also in CCl4-induced liver injury mouse model by immunohistochemistry. Honokiol significantly suppressed transforming growth factor ß1 (TGF-ß1)-induced EMT and migration of AML-12 cells along with decreased EMT phenotypes such as loss of cell adhesion and formation of fibroblast like mesenchymal cells in TGF-ß1-treated AML-12 cells. Consistently, Honokiol suppressed the expression of Snail and transmembrane protease serine 4 (TMPRSS4), but not p-Smad3, and activated E-cadherin in TGF-ß1-treated AML-12 cells. Additionally, Honokiol reduced the expression of ß-catenin, p-AKT, p-ERK, p-p38 and increased phosphorylation of glycogen synthase kinase 3 beta (GSK3ß) and JNK in TGF-ß1-treated AML-12 cells via TGF-ß1/nonSmad pathway. Conversely, GSK3ß inhibitor SB216763 reversed the ability of Honokiol to reduce Snail, ß-catenin and migration and activate E-cadherin in TGF-ß1-treated AML-12 cells. Also, Honokiol suppressed hepatic steatosis and necrosis by reducing the expression of TGF-ß1 and α-SMA in liver tissues of CCl4 treated mice. These findings provide scientific evidence that Honokiol suppresses EMT and hepatic fibrosis via activation of E-cadherin/GSK3ß/JNK and inhibition of AKT/ERK/p38/ß-catenin/TMPRSS4 signaling axis.


Asunto(s)
Leucemia Mieloide Aguda , Factor de Crecimiento Transformador beta1 , Ratones , Animales , Factor de Crecimiento Transformador beta1/metabolismo , beta Catenina/metabolismo , Proteínas Proto-Oncogénicas c-akt , Glucógeno Sintasa Quinasa 3 beta , Transición Epitelial-Mesenquimal , Cateninas/farmacología , Fibrinolíticos/farmacología , Cadherinas , Cirrosis Hepática
2.
Int J Mol Sci ; 22(19)2021 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-34638959

RESUMEN

Though Morusin isolated from the root of Morus alba was known to have antioxidant, anti-inflammatory, antiangiogenic, antimigratory, and apoptotic effects, the underlying antitumor effect of Morusin is not fully understood on the glycolysis of liver cancers. Hence, in the current study, the antitumor mechanism of Morusin was explored in Hep3B and Huh7 hepatocellular carcninomas (HCC) in association with glycolysis and G1 arrest. Herein, Morusin significantly reduced the viability and the number of colonies in Hep3B and Huh7 cells. Moreover, Morusin significantly increased G1 arrest, attenuated the expression of cyclin D1, cyclin D3, cyclin E, cyclin-dependent kinase 2 (CDK2), cyclin-dependent kinase 4 (CDK4), and cyclin-dependent kinase 6 (CDK6) and upregulated p21 and p27 in Hep3B and Huh7 cells. Interestingly, Morusin significantly activated phosphorylation of the adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK)/acetyl-CoA carboxylase (ACC) but attenuated the expression of the p-mammalian target of protein kinase B (AKT), rapamycin (mTOR), c-Myc, hexokinase 2(HK2), pyruvate kinases type M2 (PKM2), and lactate dehydrogenase (LDH) in Hep3B and Huh7 cells. Consistently, Morusin suppressed lactate, glucose, and adenosine triphosphate (ATP) in Hep3B and Huh7 cells. Conversely, the AMPK inhibitor compound C reduced the ability of Morusin to activate AMPK and attenuate the expression of p-mTOR, HK2, PKM2, and LDH-A and suppressed G1 arrest induced by Morusin in Hep3B cells. Overall, these findings suggest that Morusin exerts an antitumor effect in HCCs via AMPK mediated G1 arrest and antiglycolysis as a potent dietary anticancer candidate.


Asunto(s)
Proteínas Quinasas Activadas por AMP/metabolismo , Antineoplásicos/farmacología , Carcinoma Hepatocelular/metabolismo , Flavonoides/farmacología , Puntos de Control de la Fase G1 del Ciclo Celular/efectos de los fármacos , Glucólisis/efectos de los fármacos , Neoplasias Hepáticas/metabolismo , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Extractos Vegetales/farmacología , Carcinoma Hepatocelular/patología , Proteínas Portadoras/metabolismo , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Hexoquinasa/metabolismo , Humanos , Lactato Deshidrogenasa 5/metabolismo , Neoplasias Hepáticas/patología , Proteínas de la Membrana/metabolismo , Morus/química , Raíces de Plantas/química , Serina-Treonina Quinasas TOR/metabolismo , Hormonas Tiroideas/metabolismo , Proteínas de Unión a Hormona Tiroide
3.
Phytother Res ; 35(7): 3812-3820, 2021 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-33856720

RESUMEN

Since the AKT/mammalian target of rapamycin (mTOR)/c-Myc signaling plays a pivotal role in the modulation of aerobic glycolysis and tumor growth, in the present study, the role of AKT/mTOR/c-Myc signaling in the apoptotic effect of Compound K (CK), an active ginseng saponin metabolite, was explored in HepG2 and Huh7 human hepatocellular carcinoma cells (HCCs). Here, CK exerted significant cytotoxicity, increased sub-G1, and attenuated the expression of pro-Poly (ADP-ribose) polymerase (pro-PARP) and Pro-cysteine aspartyl-specific protease (pro-caspase3) in HepG2 and Huh7 cells. Consistently, CK suppressed AKT/mTOR/c-Myc and their downstreams such as Hexokinase 2 (HK2) and pyruvate kinase isozymes M2 (PKM2) in HepG2 and Huh7 cells. Additionally, CK reduced c-Myc stability in the presence or absence of cycloheximide in HepG2 cells. Furthermore, AKT inhibitor LY294002 blocked the expression of p-AKT, c-Myc, HK2, PKM2, and pro-cas3 in HepG2 cells. Pyruvate blocked the ability of CK to inhibit p-AKT, p-mTOR, HK2, and pro-Cas3 in treated HepG2 cells. Overall, these findings provide evidence that CK induces apoptosis via inhibition of glycolysis and AKT/mTOR/c-Myc signaling in HCC cells as a potent anticancer candidate for liver cancer clinical translation.


Asunto(s)
Carcinoma Hepatocelular , Ginsenósidos/farmacología , Neoplasias Hepáticas , Transducción de Señal , Apoptosis , Carcinoma Hepatocelular/tratamiento farmacológico , Línea Celular Tumoral , Glucólisis , Células Hep G2 , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Proteínas Proto-Oncogénicas c-akt/metabolismo , Serina-Treonina Quinasas TOR/metabolismo
4.
Sci Rep ; 11(1): 758, 2021 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-33436876

RESUMEN

The purpose of this research was to identify metabolite change during barley (Hordeum vulgare) germination and reveal active principles for the anti-wrinkle activity. Barley was germinated with deionized water (DW) and mineral-rich water (MRW) for the comparison of the effect of mineral contents on the metabolites changes during germination. The effects of germinated barley extracts (GBEs) on collagen production and collagenase inhibition were evaluated in vitro using human dermal fibroblasts (HDFs). A pronounced anti-wrinkle activity was observed in the test group treated with the MRW-GBEs. In order to find out the active components related to the anti-wrinkle activity, an orthogonal projection to latent structure-discriminant analysis (OPLS-DA) was performed, using the data from secondary metabolites profiling conducted by UPLC-PDA-ESI-MS. The anti-wrinkle activity of MRW-GBEs was revealed to be associated with the increase of oligomeric compounds of procyanidin and prodelphinidin, indicating that it can be used as an active ingredient for anti-wrinkle agents.


Asunto(s)
Fibroblastos/efectos de los fármacos , Germinación , Hordeum/metabolismo , Metaboloma , Extractos Vegetales/farmacología , Envejecimiento de la Piel/efectos de los fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Dermis/citología , Dermis/efectos de los fármacos , Dermis/metabolismo , Fibroblastos/citología , Fibroblastos/metabolismo , Hordeum/crecimiento & desarrollo , Humanos , Metaloproteinasa 1 de la Matriz/química
5.
Int J Med Sci ; 17(16): 2496-2504, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33029092

RESUMEN

Background: To maintain the normal pregnancy, suppression of inflammatory signaling pathway is a crucial physiologic response. Dexmedetomidine has been used for labor analgesia or supplement of inadequate regional analgesia during delivery. And it has been reported that dexmedetomidine has an anti-inflammatory effect. In this study, we examined the influence of dexmedetomidine on the expression of cyclooxygenase-2 (COX-2), prostaglandin E2 (PGE2) and inflammatory cytokines in lipopolysaccharide (LPS)-stimulated human amnion-derived WISH cells. In addition, we evaluated the association of mitogen-activated protein kinase (MAPK) and nuclear factor kappa B (NF-κB) pathway in anti-inflammatory effect of dexmedetomidine. Methods: Human amnion-derived WISH cells were pretreated with various concentrations of dexmedetomidine (0.001-1 µg/ml) for 1 h and after then treated with LPS (1 µg/ml) for 24 h. MTT assay was conducted to evaluate the cytotoxicity. Nitric oxide (NO) production was analyzed using Griess-reaction microassay. RT-PCR was performed for analysis of mRNA expressions of COX-2, PGE2, tumor necrosis factor (TNF)-α and interlukin (IL)-1ß. Protein expressions of COX-2, PGE2, p38 and NF-κB were analyzed by western blotting. Results: LPS and dexmedetomidine had no cytotoxic effect on WISH cells. There was no difference in NO production after dexmedetomidine pretreatment. The mRNA and protein expressions of COX-2 and PGE2 were decreased by dexmedetomidine pretreatment in LPS-treated WISH cells. Dexmedetomidine also attenuated the LPS-induced mRNA expression of TNF-α and IL-1ß. The activation of p38 and NF-κB was suppressed by dexmedetomidine pretreatment in LPS-treated WISH cells. Conclusion: We demonstrated that dexmedetomidine pretreatment suppressed the expressions of inflammatory mediators increased by LPS. In addition, this study suggests that anti-inflammatory effect of dexmedetomidine on WISH cells was mediated by the inhibitions of p38 and NF-κB activation.


Asunto(s)
Amnios/efectos de los fármacos , Antiinflamatorios/farmacología , Dexmedetomidina/farmacología , Inflamación/tratamiento farmacológico , Amnios/citología , Amnios/inmunología , Antiinflamatorios/uso terapéutico , Línea Celular , Ciclooxigenasa 2/metabolismo , Dexmedetomidina/uso terapéutico , Dinoprostona/metabolismo , Evaluación Preclínica de Medicamentos , Humanos , Inflamación/metabolismo , Mediadores de Inflamación/metabolismo , Lipopolisacáridos/inmunología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , FN-kappa B/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
6.
Meat Sci ; 93(3): 715-22, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23273483

RESUMEN

In this study, we assessed the antioxidant efficacy and nutritional value of 10 leafy edible plants and evaluated their potential as natural antioxidants for meat preservation. We measured total phenolic content, 2,2-diphenyl-1-picryl-hydrazil (DPPH) radical scavenging activity, and vitamin C, chlorophyll, and carotenoid contents of 70% ethanol and water extracts of the edible plants. Based on these results, we investigated the effects of butterbur and broccoli extracts on lipid oxidation in ground beef patties. Plant extracts and butylated hydroxytoluene (BHT) were individually added to patties at both 0.1% and 0.5% (w/w) concentrations. Thiobarbituric acid reactive substance (TBARS) values and color parameters were tested periodically during 12 days of refrigerated storage. TBARS levels were significantly lower (p≤0.05) in the samples containing plant extracts or BHT than the non-treated control. In addition, the beef patties formulated with the selected plant extracts showed significantly (p≤0.05) better color stability than those without antioxidants. These results indicate that edible plant extracts are promising sources of natural antioxidants and can potentially be used as functional preservatives in meat products.


Asunto(s)
Antioxidantes , Brassica , Conservación de Alimentos/métodos , Peroxidación de Lípido/efectos de los fármacos , Carne/análisis , Petasites , Extractos Vegetales , Animales , Hidroxitolueno Butilado/farmacología , Bovinos , Color , Conservantes de Alimentos , Almacenamiento de Alimentos , Valor Nutritivo , Plantas Comestibles , Sustancias Reactivas al Ácido Tiobarbitúrico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA