Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ther Clin Risk Manag ; 20: 151-160, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38434107

RESUMEN

Purpose: Herbal medicines are occasionally used in combination with conventional antidepressants to mitigate various depression-associated symptoms. However, there is limited information on herb-antidepressant interactions. In this study, we investigated the pharmacokinetic (PK) effects of four herbal medicines (Gami-soyosan, Banhasasim-tang, Ojeok-san, and Bojungikgi-tang) on escitalopram, a commonly used antidepressant. Patients and Methods: In this open-label, fixed-sequence, three-period, crossover study, 18 participants were enrolled and divided into two groups. Each group received a 10 mg oral dose of escitalopram in period 1. Participants took escitalopram once daily and their assigned herbal medicines thrice a day for 7 d in periods 2 (group 1: Gami-soyosan, group 2: Ojeok-san) and 3 (group 1: Banhasasim-tang; group 2: Bojungikgi-tang). The primary endpoints were Cmax,ss and AUCtau,ss of escitalopram. Cmax,ss and AUCtau,ss in period 1 were obtained using nonparametric superposition from single-dose data. The PK endpoints were classified according to the CYP2C19 phenotype. Results: Of 18 participants, 16 completed the study. Systemic exposure to escitalopram resulted in a minor increase in the presence of each herbal medicine. The geometric mean ratios (GMRs, combination with herbal medicines/escitalopram monotherapy) and their 90% confidence intervals (CIs) for Cmax,ss and AUCtau,ss were as follows: Gamisoyosan- 1.1454 (0.9201, 1.4258) and 1.0749 (0.8084, 1.4291), Banhasasim-tang-1.0470 (0.7779, 1.4092) and 1.0465 (0.7035, 1.5568), Ojeok-san-1.1204 (0.8744, 1.4357) and 1.1267 (0.8466, 1.4996), and Bojungikgi-tang-1.1264 (0.8594, 1.4762) and 1.1400 (0.8515, 1.5261), respectively. Furthermore, no significant differences in the GMRs of Cmax,ss and AUCtau,ss were observed across different CYP2C19 phenotypes in any of the groups. Conclusion: The co-administration of escitalopram with Gami-soyosan, Banhasasim-tang, Ojeok-san, or Bojungikgi-tang did not exert significant PK effects on escitalopram. These findings provide valuable insights into the safe use of herbal medicines along with escitalopram.

2.
Int J Mol Med ; 25(3): 347-52, 2010 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20127038

RESUMEN

A scar is usually developed by an imbalance of collagen synthesis and degradation. It is believed that the flavonoids (quercetin and kaempferol) in onion extract play a role in reducing scar formation through inhibition of fibroblast activities. Even though several commercial products are composed of onion extract, the precise molecular mechanisms of onion extract in reduction of scar formation in skin are still largely unknown. In this study we investigated the effect both of onion extract and quercetin on the proliferation of fibroblasts, expression of type I collagen and matrix metalloproteinase-1 (MMP-1). Our data show that proliferation rates of fibroblasts were decreased in a dose-dependent manner of the onion extract and quercetin. The expression of type I collagen was not markedly changed by the onion extract and quercetin. Interestingly, the expression of MMP-1 was markedly increased by both onion extract and quercetin in vitro and in vivo. Thus, our data indicate that onion extract and quercetin play a role in the anti-scar effect in skin through up-regulation of MMP-1 expression, implying this agent is a promising material for reducing scar formation.


Asunto(s)
Cicatriz/prevención & control , Metaloproteinasa 1 de la Matriz/metabolismo , Cebollas/química , Extractos Vegetales/farmacología , Quercetina/farmacología , Piel , Animales , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Colágeno Tipo I/metabolismo , Relación Dosis-Respuesta a Droga , Activación Enzimática , Quinasas MAP Reguladas por Señal Extracelular/genética , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Fibroblastos/citología , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Humanos , Proteínas Quinasas JNK Activadas por Mitógenos/genética , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Quempferoles/metabolismo , Quempferoles/farmacología , Metaloproteinasa 1 de la Matriz/genética , Ratones , Ratones Desnudos , Extractos Vegetales/metabolismo , Quercetina/metabolismo , Piel/efectos de los fármacos , Piel/patología , Inhibidor Tisular de Metaloproteinasa-1/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA