Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Ethnopharmacol ; 319(Pt 3): 117285, 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-37839769

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Ulmus macrocarpa Hance (UmH) bark has been traditionally utilized for medicinal purposes. The bark extract of this plant has diverse health benefits, and its potential role in enhancing bone health is of distinct interest, particularly when considering the substantial health and economic implications of bone-related pathologies, such as osteoporosis. Despite the compelling theoretical implications of UmH bark in fortifying bone health, no definitive evidence at the in vivo level is currently available, thus highlighting the innovative and as-yet-unexplored potential of this field of study. AIM OF THE STUDY: Primarily, our study aims to conduct a meticulous analysis of the disparity in the concentration of active compounds in the UmH root bark (Umrb) and trunk bark (Umtb) extracts and confirm UmH bark's efficacy in enhancing bone health in vivo, illuminating the cellular mechanisms involved. MATERIALS AND METHODS: The Umrb and Umtb extracts were subjected to component analysis using high-performance liquid chromatography and then assessed for their inhibitory effects on osteoclast differentiation through the TRAP assay. An ovariectomized (OVX) mouse model replicates postmenopausal conditions commonly associated with osteoporosis. Micro-CT was used to analyze bone structure parameters, and enzyme-linked immunosorbent assay and staining were used to assess bone formation markers and osteoclast activity. Furthermore, this study investigated the impact of the extract on the expression of pivotal proteins and genes involved in bone formation and resorption using mouse bone marrow-derived macrophages (BMMs). RESULTS: The findings of our study reveal a significant discrepancy in the concentration of active constituents between Umrb and Umtb, establishing Umtb as a superior source for promoting bone health. I addition, a standardized pilot-scale procedure was conducted for credibility. The bone health benefits of Umtb were verified using an OVX model. This validation involved the assessment of various parameters, including BMD, BV/TV, and BS/TV, using micro-CT imaging. Additionally, the activation of osteoblasts was evaluated by Umtb by measuring specific factors such as ALP, OCN, OPG in blood samples and through IHC staining. In the same investigations, diminished levels of osteoclast differentiation factors, such as TRAP, NFATc1, were also observed. The observed patterns exhibited consistency in vitro BMM investigations. CONCLUSIONS: Through verification at both in vitro levels using BMMs and in vivo levels using the OVX-induced mouse model, our research demonstrates that Umtb is a more effective means of improving bone health in comparison to Umrb. These findings pave the way for developing health-functional foods or botanical drugs targeting osteoporosis and other bone-related disorders and enhance the prospects for future research extensions, including clinical studies, in extract applications.


Asunto(s)
Osteoporosis , Ulmus , Femenino , Humanos , Animales , Ratones , Osteoclastos , Corteza de la Planta , Osteoporosis/prevención & control , Modelos Animales de Enfermedad , Ovariectomía
2.
J Nat Prod ; 86(4): 751-758, 2023 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-36812487

RESUMEN

A chemical investigation of the endophytic Streptomyces sp. HBQ95, associated with the medicinal plant Cinnamomum cassia Presl, enabled the discovery of four new piperazic acid-bearing cyclodepsipeptides, lydiamycins E-H (1-4), and one known compound (lydiamycin A). Their chemical structures, including absolute configurations, were defined by a combination of spectroscopic analyses and multiple chemical manipulations. Lydiamycins F-H (2-4) and A (5) exhibited antimetastatic activity against PANC-1 human pancreatic cancer cells without significant cytotoxicity.


Asunto(s)
Cinnamomum aromaticum , Plantas Medicinales , Piridazinas , Streptomyces , Humanos , Cinnamomum aromaticum/química , Streptomyces/química , Piridazinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA