Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Food Funct ; 10(2): 836-848, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30681105

RESUMEN

Obesity is a worldwide public health concern requiring safe and effective strategies. Recent studies suggest that bioactive compounds from soybeans have beneficial effects on weight loss and reducing fat accumulation. However, despite the biochemical and nutritional changes during germination, the biological effects of germinated soy germ have not been fully investigated. In this article, germinated soy germ extract (GSGE) was evaluated as a potential treatment option for obesity using 3T3-L1 pre-adipocyte and high-fat diet (HFD)-induced obese mice. In vitro studies demonstrated that GSGE suppressed the differentiation of 3T3-L1 cells into mature adipocytes, along with reductions in lipid accumulation and lipid droplet formation. In vivo studies also showed that a daily dose of 1 mg kg-1 of GSGE reduced weight gain, adipocyte area, serum triglyceride, and LDL-cholesterol in HFD-fed mice. The GSGE treatment promoted browning, which was associated with increased UCP1 expression in vitro and in vivo. In addition, GSGE treatment induced beige fat activation by upregulation of lipolysis and beta-oxidation. Furthermore, gene and protein expression levels of endocannabinoid system-related factors such as NAPE-PLD, FAAH, DAGL-α, and CB2 were altered along with browning and beige fat activation by GSGE. The present study indicates that GSGE effectively inhibits lipid accumulation and promotes beige fat transition and activation. Therefore, we suggest that GSGE treatment could be a promising strategy for the prevention of obesity by promoting weight loss, reducing fat accumulation, and improving obesity-related metabolic disorders.


Asunto(s)
Tejido Adiposo Beige/efectos de los fármacos , Glycine max/química , Obesidad/prevención & control , Extractos Vegetales/farmacología , Saponinas/farmacología , Células 3T3-L1 , Tejido Adiposo Beige/fisiología , Animales , Supervivencia Celular , Dieta Alta en Grasa/efectos adversos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/química , Saponinas/química
2.
Menopause ; 19(9): 1043-51, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22692333

RESUMEN

OBJECTIVE: Diabetes mellitus has been known to be associated with a high risk of osteoporosis. Rubus coreanus Miquel, a traditional Asian herbal medicine, has various uses, such as antiobesity and antiosteoporosis treatment, among others. We investigated the effect of R. coreanus extracts on diabetic osteoporosis. METHODS: Rats were not treated, or treated with streptozotocin or R. coreanus, or ovariectomized, in various combinations. After 6 weeks of treatment, the rats were killed, and serum biochemistry, histopathology, immunohistochemistry, and semiquantitative reverse transcription polymerase chain reaction were performed. In addition, in vitro studies were performed in MC3T3-E1 and RAW 264.7 cells. RESULTS: Rats treated using R. coreanus showed significant improvement in trabecular bone histopathology. Increased expression of osteocalcin was observed in rats treated with streptozotocin and R. coreanus, whether ovariectomized or not. In addition, the expression levels of cannabinoid receptors 1 and 2 and receptor activator for nuclear factor κß ligand were increased in rats that were ovariectomized and treated with streptozotocin and R. coreanus but decreased in those treated with streptozotocin and R. coreanus alone. These results indicate that the antiosteoporotic effect of R. coreanus in postmenopausal diabetic osteoporosis is attributable to the cannabinoid receptor-dependent maximal up-regulation of osteoblastogenesis. CONCLUSIONS: The present study shows that R. coreanus may rescue diabetic osteoporotic bone loss by simultaneous alteration of activation in osteoblasts and osteoclasts. Furthermore, these effects may be partially influenced by the up-regulation of the endocannabinoid system. In conclusion, dietary R. coreanus may be of use in improving the conditions of diabetic osteoporosis.


Asunto(s)
Diabetes Mellitus Experimental/complicaciones , Osteoblastos/fisiología , Osteoclastos/fisiología , Osteoporosis/tratamiento farmacológico , Extractos Vegetales/administración & dosificación , Rosaceae/química , Fosfatasa Alcalina/análisis , Animales , Huesos/química , Huesos/efectos de los fármacos , Huesos/enzimología , Línea Celular , Endocannabinoides/fisiología , Femenino , Frutas/química , Humanos , Osteoblastos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoporosis/etiología , Osteoporosis/fisiopatología , Ovariectomía , Fitoterapia , Ligando RANK/análisis , Ligando RANK/genética , ARN Mensajero/análisis , Ratas , Ratas Wistar , Receptor Cannabinoide CB1/análisis , Receptor Cannabinoide CB1/genética , Receptor Cannabinoide CB2/análisis , Receptor Cannabinoide CB2/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA