Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Intervalo de año de publicación
1.
J Ethnopharmacol ; 194: 1022-1031, 2016 Dec 24.
Artículo en Inglés | MEDLINE | ID: mdl-27836777

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: The plant species Taraxacum coreanum (TC), Youngia sonchifolia (YS), and Ixeris dentata (ID) belong to the family Compositae and are used for medicinal purposes in traditional medicine. However, the anticancer effects of TC, YS, and ID extracts and the underlying molecular mechanisms in melanoma cells have not been elucidated. AIM OF THE STUDY: To investigate the potential anticancer effects of TC, YS, and ID extracts on human melanoma cells and explore the potential pharmacological mechanisms in vitro and in vivo. MATERIALS AND METHODS: In this comparative study, we investigated the effects of TC, YS, and ID extracts on cell proliferation in human melanoma A375P and A375SM cells using MTT[3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assays. Apoptotic cells were detected by 4',6-diamidino-2-phenylinodole (DAPI) staining. We also investigated whether the growth-inhibitory effects were associated with the induction of apoptosis and whether the mechanisms of cell death were the result of signaling molecules such as p53, Bax, Bcl-2, caspase-9, Poly-ADP ribose polymerase (PARP), and Erk (Extracellular signal-regulated protein kinase) 1/2. The in vivo antitumor effects were evaluated by measuring the tumor volume and weight and performing Terminal deoxynucleotidyl transferase (TdT) dUTP Nick End Labeling (TUNEL) assay and immunohistochemistry (IHC) in tumor xenograft models. RESULTS: TC, YS, and ID extracts effectively inhibited the growth of A375P and A375SM cells. In addition, several apoptotic events were observed following treatment, including DNA fragmentation and chromatin condensation by DAPI staining. The extracts increased p53, Bax, cleaved-caspase-9 and cleaved-PARP expression, whereas the expression of Bcl-2 was decreased in both cell lines. Furthermore, ID extract significantly inhibited the activation of Erk1/2 in both cell lines. Among the three extracts, ID had the strongest apoptotic effects. The administration of ID extract to mice inhibited tumor growth without any toxicity following 4 weeks of treatment. This extract increased the expression of apoptotic cells and p53 protein and decreased phospho-Erk1/2 protein. CONCLUSION: TC, YS, and ID extracts suppress the growth of human melanoma cells through apoptosis. Among these extracts, ID has the strongest anticancer and apoptotic effects. It induces apoptosis through the inhibition of Erk1/2 in A375P and A375SM human melanoma cells and in tumor xenograft models and may be a potential chemotherapeutic agent against melanoma.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Asteraceae/química , Melanoma/tratamiento farmacológico , Extractos Vegetales/farmacología , Taraxacum/química , Animales , Antineoplásicos Fitogénicos/química , Apoptosis/efectos de los fármacos , Caspasa 9/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Fragmentación del ADN/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Masculino , Melanoma/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Extractos Vegetales/química , Poli(ADP-Ribosa) Polimerasas/metabolismo , Transducción de Señal/efectos de los fármacos , Proteína p53 Supresora de Tumor/metabolismo , Proteína X Asociada a bcl-2/metabolismo
2.
Electron. j. biotechnol ; 11(1): 71-79, Jan. 2008. ilus, graf, tab
Artículo en Inglés | LILACS | ID: lil-522162

RESUMEN

Bromelain is a crude protein extract obtained from pineapple stems, which comprises a variety of proteolytic enzymes. It exhibits potential therapeutic activities against trauma, inflammation, autoimmune diseases and malignant disorders. In this study, we cloned BAA1 (the gene encoding fruit bromelain) into a plant expression vector that was then used to transform Brassica rapa and overexpress BAA1 under the control of the cauliflower mosaic virus (CaMV) 35S promoter. We demonstrate that constitutive overexpression of BAA1 in B. rapa confers enhanced resistance to the soft rot pathogen Pectobacterium carotovorum ssp. carotovorum. These results suggest that it could be utilized for protecting plants from attack by bacterial pathogens.


Asunto(s)
Ananas , Bromelaínas , Caulimovirus , Pectobacterium , Raíces de Plantas , Brassica , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , Western Blotting
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA