Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Med Food ; 25(5): 503-512, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35483086

RESUMEN

The abnormal change of vascular smooth muscle cell (VSMC) behavior is an important cellular event leading to neointimal hyperplasia in atherosclerosis and restenosis. Plantamajoside (PMS), a phenylethanoid glycoside compound of the Plantago asiatica, has been reported to have anti-inflammatory, antioxidative, and anticancer activities. In this study, the protective effects of PMS against intimal hyperplasia and the mechanisms underlying the regulation of VSMC behavior were investigated. MTT and BrdU assays were performed to evaluate the cytotoxicity and cell proliferative activity of PMS, respectively. Rat aortic VSMC migrations after treatment with the determined concentration of PMS (50 and 150 µM) were evaluated using wound healing and Boyden chamber assays. The inhibitory effects of PMS on intimal hyperplasia were evaluated in balloon-injured (BI) rat carotid artery. PMS suppressed the proliferation in platelet-derived growth factor-BB-induced VSMC, as confirmed from the decrease in cyclin-dependent kinase (CDK)-2, CDK-4, cyclin D1, and proliferating cell nuclear antigen levels. PMS also inhibited VSMC migration, consistent with the downregulated expression and zymolytic activities of matrix metalloproteinase (MMP)2, MMP9, and MMP13. PMS specifically regulated MMP expression through p38 mitogen-activated protein kinase and focal adhesion kinase pathways. Tissue inhibitor of metalloproteinase (TIMP)1 and TIMP2 levels were upregulated via Smad1. TIMPs inhibited the conversion of pro-MMPs to active MMPs. PMS significantly inhibited neointimal formation in BI rat carotid arteries. In conclusion, PMS inhibits VSMC proliferation and migration by upregulating TIMP1 and TIMP2 expression. Therefore, PMS could be a potential therapeutic agent for vascular atherosclerosis and restenosis treatment.


Asunto(s)
Aterosclerosis , Neointima , Animales , Aterosclerosis/metabolismo , Catecoles , Movimiento Celular , Proliferación Celular , Células Cultivadas , Glucósidos , Hiperplasia/tratamiento farmacológico , Hiperplasia/metabolismo , Hiperplasia/patología , Músculo Liso Vascular , Miocitos del Músculo Liso , Neointima/tratamiento farmacológico , Neointima/metabolismo , Neointima/patología , Ratas , Ratas Sprague-Dawley , Inhibidores Tisulares de Metaloproteinasas/metabolismo , Inhibidores Tisulares de Metaloproteinasas/farmacología , Inhibidores Tisulares de Metaloproteinasas/uso terapéutico , Regulación hacia Arriba
2.
Biopharm Drug Dispos ; 35(7): 382-90, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-24903704

RESUMEN

The purpose of this study was to investigate the possible effects of licochalcone A (a herbal medicine) on the pharmacokinetics of nifedipine and its main metabolite, dehydronifedipine, in rats. The pharmacokinetic parameters of nifedipine and/or dehydronifedipine were determined after oral and intravenous administration of nifedipine to rats in the absence (control) and presence of licochalcone A (0.4, 2.0 and 10 mg/kg). The effect of licochalcone A on P-glycoprotein (P-gp) and cytochrome P450 (CYP) 3A4 activity was also evaluated. Nifedipine was mainly metabolized by CYP3A4. Licochalcone A inhibited CYP3A4 enzyme activity in a concentration-dependent manner with a 50% inhibition concentration (IC50 ) of 5.9 µm. In addition, licochalcone A significantly enhanced the cellular accumulation of rhodamine-123 in MCF-7/ADR cells overexpressing P-gp. The area under the plasma concentration-time curve from time 0 to infinity (AUC) and the peak plasma concentration (Cmax ) of oral nifedipine were significantly greater and higher, respectively, with licochalcone A. The metabolite (dehydronifedipine)-parent AUC ratio (MR) in the presence of licochalcone A was significantly smaller compared with the control group. The above data could be due to an inhibition of intestinal CYP3A4 and P-gp by licochalcone A. The AUCs of intravenous nifedipine were comparable without and with licochalcone A, suggesting that inhibition of hepatic CYP3A4 and P-gp was almost negligible.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Chalconas/farmacología , Citocromo P-450 CYP3A/metabolismo , Absorción Intestinal/efectos de los fármacos , Nifedipino/farmacocinética , Animales , Relación Dosis-Respuesta a Droga , Interacciones Farmacológicas , Inhibidores Enzimáticos/farmacología , Absorción Intestinal/fisiología , Masculino , Nifedipino/antagonistas & inhibidores , Ratas , Ratas Sprague-Dawley , Resultado del Tratamiento
3.
J Pharm Pharmacol ; 62(7): 908-14, 2010 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-20636879

RESUMEN

OBJECTIVES: The effects of myricetin, a natural flavonoid, on the pharmacokinetics of losartan and its active metabolite, EXP-3174, were investigated in rats. Losartan and myricetin interact with cytochrome P450 (CYP) enzymes and P-glycoprotein, and the increase in the use of health supplements may result in myricetin being taken concomitantly with losartan as a combination therapy to treat or prevent cardiovascular diseases. METHODS: The pharmacokinetic parameters of losartan and EXP-3174 were determined after oral administration of losartan (9 mg/kg) to rats in the presence or absence of myricetin (0.4, 2 and 8 mg/kg). The effects of myricetin on P-glycoprotein as well as CYP3A4 and CYP2C9 activity were also evaluated. KEY FINDINGS: Myricetin inhibited CYP3A4 and CYP2C9 enzyme activity with a 50% inhibition concentration of 7.8 and 13.5 microm, respectively. In addition, myricetin significantly enhanced the cellular accumulation of rhodamine 123 in MCF-7/ADR cells overexpressing P-glycoprotein in a concentration-dependent manner. The pharmacokinetic parameters of losartan were significantly altered by myricetin compared with the control. The presence of myricetin (2 or 8 mg/kg) increased the area under the plasma concentration-time curve of losartan by 31.4-61.1% and peak plasma concentration of losartan by 31.8-50.2%. Consequently, the absolute bioavailability of losartan in the presence of myricetin increased significantly (P < 0.05, 2 mg/kg; P < 0.01, 8 mg/kg) compared with the control. There was no significant change in the time to reach the peak plasma concentration, apparent volume of distribution at steady state or terminal half-life of losartan in the presence of myricetin. Furthermore, concurrent use of myricetin (8 mg/kg) significantly decreased the metabolite-parent area under the plasma concentration-time curve ratio by 20%, implying that myricetin may inhibit the CYP-mediated metabolism of losartan to its active metabolite, EXP-3174. CONCLUSIONS: The enhanced bioavailability of losartan may be mainly due to inhibition of the CYP3A4- and CYP2C9-mediated metabolism of losartan in the small intestine or in the liver, and the P-glycoprotein efflux pump in the small intestine by myricetin.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/antagonistas & inhibidores , Inhibidores Enzimáticos del Citocromo P-450 , Flavonoides/farmacología , Interacciones de Hierba-Droga , Imidazoles/metabolismo , Losartán/farmacocinética , Extractos Vegetales/farmacología , Tetrazoles/metabolismo , Animales , Antioxidantes/farmacología , Hidrocarburo de Aril Hidroxilasas/antagonistas & inhibidores , Disponibilidad Biológica , Citocromo P-450 CYP2C9 , Inhibidores del Citocromo P-450 CYP3A , Losartán/metabolismo , Masculino , Ratas , Ratas Sprague-Dawley
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA