RESUMEN
DYRK1A is one of five members of the dual-specificity tyrosine (Y) phosphorylation-regulated kinase (DYRK) family. The DYRK1A gene is located in the Down syndrome critical region and regulates cellular processes related to proliferation and differentiation of neuronal progenitor cells during early development. This has focused research on its role in neuronal degenerative diseases, including Alzheimer's and Down syndrome. Recent studies have also shown a possible role of DYRK1A in diabetes. Here we report a variety of scaffolds not generally known for DYRK1A inhibition, demonstrating their effects in in vitro assays and also in cell cultures. These inhibitors effectively block the tau phosphorylation that is a hallmark of Alzheimer's disease. The crystal structures of these inhibitors support the design of optimized and novel therapeutics.
Asunto(s)
Inhibidores de Proteínas Quinasas/química , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/química , Proteínas Tirosina Quinasas/antagonistas & inhibidores , Proteínas Tirosina Quinasas/química , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos/métodos , Células HEK293 , Humanos , Factores de Transcripción NFATC/genética , Factores de Transcripción NFATC/metabolismo , Fosforilación/efectos de los fármacos , Inhibidores de Proteínas Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Tirosina Quinasas/metabolismo , Relación Estructura-Actividad , Tirosina/metabolismo , Proteínas tau/metabolismo , Quinasas DyrKRESUMEN
The c-Src tyrosine kinase co-operates with the focal adhesion kinase to regulate cell adhesion and motility. Focal adhesion kinase engages the regulatory SH3 and SH2 domains of c-Src, resulting in localized kinase activation that contributes to tumor cell metastasis. Using assay conditions where c-Src kinase activity required binding to a tyrosine phosphopeptide based on the focal adhesion kinase SH3-SH2 docking sequence, we screened a kinase-biased library for selective inhibitors of the Src/focal adhesion kinase peptide complex versus c-Src alone. This approach identified an aminopyrimidinyl carbamate compound, WH-4-124-2, with nanomolar inhibitory potency and fivefold selectivity for c-Src when bound to the phospho-focal adhesion kinase peptide. Molecular docking studies indicate that WH-4-124-2 may preferentially inhibit the 'DFG-out' conformation of the kinase active site. These findings suggest that interaction of c-Src with focal adhesion kinase induces a unique kinase domain conformation amenable to selective inhibition.
Asunto(s)
Quinasa 1 de Adhesión Focal/antagonistas & inhibidores , Inhibidores de Proteínas Quinasas/farmacología , Familia-src Quinasas/antagonistas & inhibidores , Secuencia de Aminoácidos , Proteína Tirosina Quinasa CSK , Cristalografía por Rayos X , Evaluación Preclínica de Medicamentos/métodos , Quinasa 1 de Adhesión Focal/química , Quinasa 1 de Adhesión Focal/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Unión Proteica , Inhibidores de Proteínas Quinasas/química , Estructura Terciaria de Proteína , Dominios Homologos src , Familia-src Quinasas/química , Familia-src Quinasas/metabolismoRESUMEN
Genetic alterations that reduce the function of the immunoregulatory cytokine IL-10 contribute to colitis in mouse and man. Myeloid cells such as macrophages (MΦs) and dendritic cells (DCs) play an essential role in determining the relative abundance of IL-10 versus inflammatory cytokines in the gut. As such, using small molecules to boost IL-10 production by DCs-MΦs represents a promising approach to increase levels of this cytokine specifically in gut tissues. Toward this end, we screened a library of well-annotated kinase inhibitors for compounds that enhance production of IL-10 by murine bone-marrow-derived DCs stimulated with the yeast cell wall preparation zymosan. This approach identified a number of kinase inhibitors that robustly up-regulate IL-10 production including the Food and Drug Administration (FDA)-approved drugs dasatinib, bosutinib, and saracatinib that target ABL, SRC-family, and numerous other kinases. Correlating the kinase selectivity profiles of the active compounds with their effect on IL-10 production suggests that inhibition of salt-inducible kinases (SIKs) mediates the observed IL-10 increase. This was confirmed using the SIK-targeting inhibitor HG-9-91-01 and a series of structural analogs. The stimulatory effect of SIK inhibition on IL-10 is also associated with decreased production of the proinflammatory cytokines IL-1ß, IL-6, IL-12, and TNF-α, and these coordinated effects are observed in human DCs-MΦs and anti-inflammatory CD11c(+) CX3CR1(hi) cells isolated from murine gut tissue. Collectively, these studies demonstrate that SIK inhibition promotes an anti-inflammatory phenotype in activated myeloid cells marked by robust IL-10 production and establish these effects as a previously unidentified activity associated with several FDA-approved multikinase inhibitors.
Asunto(s)
Células Dendríticas/efectos de los fármacos , Células Dendríticas/inmunología , Interleucina-10/biosíntesis , Inhibidores de Proteínas Quinasas/farmacología , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Compuestos de Anilina/farmacología , Animales , Células Cultivadas , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Citocinas/biosíntesis , Dasatinib , Células Dendríticas/enzimología , Evaluación Preclínica de Medicamentos , Humanos , Mediadores de Inflamación/metabolismo , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/enzimología , Enfermedades Inflamatorias del Intestino/inmunología , Intestino Delgado/efectos de los fármacos , Intestino Delgado/enzimología , Intestino Delgado/inmunología , Ratones , Ratones Endogámicos BALB C , Ratones Endogámicos C57BL , Ratones Transgénicos , Células Mieloides/efectos de los fármacos , Células Mieloides/enzimología , Células Mieloides/inmunología , Nitrilos/farmacología , Compuestos de Fenilurea/química , Compuestos de Fenilurea/farmacología , Inhibidores de Proteínas Quinasas/química , Pirimidinas/química , Pirimidinas/farmacología , Quinolinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/inmunología , Linfocitos T Reguladores/efectos de los fármacos , Linfocitos T Reguladores/enzimología , Linfocitos T Reguladores/inmunología , Tiazoles/farmacología , Factores de Transcripción/metabolismoRESUMEN
Selective kinase inhibitors have had a substantial impact on the field of medical oncology. Whereas these agents can elicit dramatic clinical responses in some settings, their activity is generally limited to a subset of treated patients whose tumor cells harbor a specific genetic lesion. We have established an automated platform for examining the sensitivity to various molecularly targeted inhibitors across a large panel of human tumor-derived cell lines to identify additional genotype-correlated responses that may be clinically relevant. Among the inhibitors tested in a panel of 602 cell lines derived from a variety of human cancers, we found that a selective inhibitor of the anaplastic lymphoma kinase (ALK) potently suppressed growth of a small subset of tumor cells. This subset included lines derived from anaplastic large cell lymphomas, non-small-cell lung cancers, and neuroblastomas. ALK is a receptor tyrosine kinase that was first identified as part of a protein fusion derived from a chromosomal translocation detected in the majority of anaplastic large cell lymphoma patients, and has recently been implicated as an oncogene in a small fraction of non-small-cell lung cancers and neuroblastomas. Significantly, sensitivity in these cell lines was well correlated with specific ALK genomic rearrangements, including chromosomal translocations and gene amplification. Moreover, in such cell lines, ALK kinase inhibition can lead to potent suppression of downstream survival signaling and an apoptotic response. These findings suggest that a subset of lung cancers, lymphomas, and neuroblastomas that harbor genomic ALK alterations may be clinically responsive to pharmacologic ALK inhibition.