Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Nutr Biochem ; 26(3): 234-40, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25488547

RESUMEN

Bitter melon (BM; Momordica charantia) has been used as a treatment method for various diseases including cancer and diabetes. The objective of this study was to investigate whether BM has preventive effects against insulin resistance and diabetes and to identify the underlying mechanism by which BM ameliorates insulin resistance in obese and diabetic rats. The rats were separated into three groups as follows: (a) high-fat (HF) diet control, (b) HF diet and 1% BM and (c) HF diet and 3% BM. After 6 weeks of assigned treatments, body weight and food intake were not altered by BM administration. Bitter melon treatment significantly improved glucose tolerance and insulin sensitivity. The levels of proinflammatory cytokines were significantly down-regulated in liver, muscle and epididymal fats from BM-treated rats. The activation of nuclear factor-κB (NF-κB) in the liver and muscle was decreased by BM compared with HF controls. The 3% BM supplementation significantly increased the levels of phospho-insulin receptor substrate-1 (Tyr612) and phospho-Akt (Ser473). It also significantly decreased the levels of phospho-NF-κB (p65) (Ser536) and phospho-c-Jun N-terminal kinase (JNK) (Thr183/Tyr185) in liver, muscle and epididymal fats. The findings of this study indicate that BM exerted preventive effects against insulin resistance and diabetes through the modulation of NF-κB and JNK pathways. Therefore, BM may be useful in the prevention of insulin resistance and diabetes.


Asunto(s)
Diabetes Mellitus Tipo 2/prevención & control , Suplementos Dietéticos , Hipoglucemiantes/uso terapéutico , Resistencia a la Insulina , Momordica charantia/química , Obesidad/fisiopatología , Extractos Vegetales/uso terapéutico , Tejido Adiposo Blanco/inmunología , Tejido Adiposo Blanco/metabolismo , Animales , Antiinflamatorios no Esteroideos/administración & dosificación , Antiinflamatorios no Esteroideos/uso terapéutico , Núcleo Celular/inmunología , Núcleo Celular/metabolismo , Citocinas/antagonistas & inhibidores , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/etiología , Dieta Alta en Grasa/efectos adversos , Frutas/química , Hipoglucemiantes/administración & dosificación , Proteínas Quinasas JNK Activadas por Mitógenos/antagonistas & inhibidores , Proteínas Quinasas JNK Activadas por Mitógenos/metabolismo , Hígado/inmunología , Hígado/metabolismo , Sistema de Señalización de MAP Quinasas , Masculino , Músculo Esquelético/inmunología , Músculo Esquelético/metabolismo , FN-kappa B/antagonistas & inhibidores , FN-kappa B/metabolismo , Obesidad/etiología , Obesidad/inmunología , Obesidad/metabolismo , Extractos Vegetales/administración & dosificación , Transporte de Proteínas , Ratas Endogámicas OLETF
2.
PLoS One ; 6(2): e17057, 2011 Feb 23.
Artículo en Inglés | MEDLINE | ID: mdl-21373642

RESUMEN

BACKGROUND: Sirt6 has been implicated in the regulation of hepatic lipid metabolism and the development of hepatic steatosis. The aim of this study was to address the potential role of Sirt6 in the protective effects of rosiglitazone (RGZ) on hepatic steatosis. METHODS: To investigate the effect of RGZ on hepatic steatosis, rats were treated with RGZ (4 mg·kg⁻¹·day⁻¹) by stomach gavage for 6 weeks. The involvement of Sirt6 in the RGZ's regulation was evaluated by Sirt6 knockdown in AML12 mouse hepatocytes. RESULTS: RGZ treatment ameliorated hepatic lipid accumulation and increased expression of Sirt6, peroxisome proliferator-activated receptor gamma coactivtor-1-α (Ppargc1a/PGC1-α) and Forkhead box O1 (Foxo1) in rat livers. AMP-activated protein kinase (AMPK) phosphorylation was also increased by RGZ, accompanied by alterations in phosphorylation of LKB1. Interestingly, in free fatty acid-treated cells, Sirt6 knockdown increased hepatocyte lipid accumulation measured as increased triglyceride contents (p = 0.035), suggesting that Sirt6 may be beneficial in reducing hepatic fat accumulation. In addition, Sirt6 knockdown abolished the effects of RGZ on hepatocyte fat accumulation, mRNA and protein expression of Ppargc1a/PGC1-α and Foxo1, and phosphorylation levels of LKB1 and AMPK, suggesting that Sirt6 is involved in RGZ-mediated metabolic effects. CONCLUSION: Our results demonstrate that RGZ significantly decreased hepatic lipid accumulation, and that this process appeared to be mediated by the activation of the Sirt6-AMPK pathway. We propose Sirt6 as a possible therapeutic target for hepatic steatosis.


Asunto(s)
Hígado Graso/tratamiento farmacológico , PPAR gamma/agonistas , Sirtuinas/genética , Tiazolidinedionas/farmacología , Tiazolidinedionas/uso terapéutico , Animales , Células Cultivadas , Evaluación Preclínica de Medicamentos , Hígado Graso/genética , Hígado Graso/metabolismo , Hígado Graso/patología , Regulación Enzimológica de la Expresión Génica/efectos de los fármacos , Hipolipemiantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Metabolismo de los Lípidos/genética , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones , PPAR gamma/metabolismo , Ratas , Ratas Endogámicas OLETF , Ratas Long-Evans , Rosiglitazona , Sirtuinas/metabolismo , Sirtuinas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA